
复变函数论
文章平均质量分 86
复变函数
u013250861
这个作者很懒,什么都没留下…
展开
-
数学分析、实分析(实变函数论)、复分析(复变函数论)是什么关系?
相当于,一个是教你怎么打游戏,你的纸片人老婆怎么玩、怎么操作,一个是告诉你游戏是怎么码出来的、纸片人老婆的模型是怎么用3DMax捏出来的;但是一旦跨过这个坎,你的分析能力就会上一个质变台阶(差不多从青铜到白银吧),所以对于分析学而言,实变函数就是一个分水岭,熟悉了这样一套逻辑,把它推广到。实变函数,或者称实分析,一般指“Lebesgue积分、微分理论”,它所处理的函数对象都是不太友好的、长相怪异的妖孽,逻辑的起点也是“Lebesgue测度”这样的抽象概念,并且前期涉及大量的。中去,就成了测度论,这是现代。原创 2024-04-28 23:12:26 · 4437 阅读 · 0 评论 -
复变函数论:简介【复变函数(复分析):以复数作为自变量的函数】【该学科的一切讨论都是在复数范围内进行的】【复变函数的主要研究对象是解析函数】【解析函数:在某个区域内处处可导的复变函数】
我们知道, 在解实系数一元二次方程ax2bxc0a0时, 如果判别式b2−4ac0, 就会遇到负数开平方的问题. 最简单的一个例子, 是在解方程x210时, 就会遇到 -1 开平方的问题.16 世纪中叶, 意大利卡尔达诺 (Cardano) 在 1545 年解三次方程时, 首先产生了负数开平方的思想. 他把 40 看作5−15与5−−15的乘积, 然而这只不过是一种纯形式的表示而已.当时,谁也说不上这样表示究竟有什么意义.三次方程x。原创 2024-02-15 15:40:12 · 709 阅读 · 0 评论 -
复变函数论1-1-复数1:复数域【z=x+yi,实数x和y分别称为复数z的实部、虚部】【x+yi、x−yi互为共轭复数】【两复数的和差乘商仍是复数】【在复数域中不能规定大小关系】
复变函数是我国数学工作者从事研究极早也极有成效的数学分支之一.我国老一藮的数学家在单复变函数及多复变函数方面做过许多重要的工作,复数的加 (减) 法可按实部与实部相加 (减), 虚部与虚部相加 (减). 即复数。这就是著名的代数学基本定理,它用复变函数理论来证明, 是非常简洁的. 又如,可先把它写成分式的形式, 然后分子、分母同乘分母的共轭复数,再进行简化, 即。和实数域不同的是, 在复数域中不能规定复数像实数那样的大小关系. 事实上,"作为虚数的单位, 也是他首创的.此后, 复数才被人们广泛承认和使用.原创 2024-02-12 00:10:10 · 813 阅读 · 0 评论 -
复变函数论1-1-复数2:复平面【复数z=x+iy由一对有序实数(x,y)唯一确定;(x,y) 就称为复数z的实数对形式】【表示复数z的平面称为复平面;x轴:实轴;y轴:虚轴】
也构成一一对应关系 (复数 0 对应着零向量), 这种对应关系使复数的加 (减)为了方便起见, 今后我们不再区分"数"和 “点”、“数集"和"点集”,于是能够建立平面上全部的点和全体复数间的一一对应关系. 换句话说,说到"数"也可以指这个数代表的"点".例如,我们常说"点。引进了复平面之后, 我们在"数"和"点"之间建立了联系.人们经过长期的摸索与研究发现, 对于很多的平面问题。轴上的非原点的点对应着纯虚数, 故。所对应的向量的和向量, 也就是从。说到"点"可以指它所代表的"数",由图 1.2 可以看出,原创 2024-02-12 00:15:12 · 831 阅读 · 0 评论 -
复变函数论1-1-复数3-1:复数的模【等价于向量的模】【复数z=x+iy的模:|z|=r=√(x²+y²)】【三角不等式:|z₁+z₂|≤|z₁|+|z₂|】
来确定(图 1.1). 这里使原点与直角坐标系的原点重合, 极轴与正实轴重合.是非负实数, 所以能够比较大小. 同样,复数的实、虚部也能够比较大小.这里引进的模的概念与实数的绝对值的概念是一致的. 由于复数。(1.2) 及 (1.3) 中等号成立的几何意义是:复数。此外, 根据图 1.3 ,我们还有不等式。根据图 1.1 ,我们有不等式。根据图 1.2 ,我们有不等式。(三角形两边之和大于第三边).(三角形两边之差小于第三边).所表示的两个向量共线且同向.即。的位置, 也可以借助于点。由图 1.3 可见,原创 2024-02-17 20:55:16 · 1306 阅读 · 0 评论 -
复变函数论1-1-复数3-2:复数的辐角【实轴正向到非零复数z=x+iy所对应的向量Oz间的夹角θ;tanθ=y/x;θ=Argz(集合,无数个);主辐角:−π<argz⩽π】
复数的这三种表示法可以互相转换,以适应讨论不同问题时的需要,且使用起来各有其便.从直角坐标与极坐标的关系, 我们可以用复数的模。有如下关系(图 1.5、图 1.6) (注意。表示其中的一个特定值,并称适合条件。我们知道, 任一非零复数。有无穷多个辐角, 今以。的主辐角时, 它与反正切。实部是cos,虚部是sin。也就是说,任一非零复数。, 求其大小和方向.,即(由图 1.1)原创 2024-02-17 20:58:21 · 2421 阅读 · 0 评论 -
复变函数论1-1-复数3-3-1-复数的表示形式1:代数形式【z=x+iy】【欧拉公式:eⁱᶿ=cosθ+isinθ】
复数的这三种表示法可以互相转换,以适应讨论不同问题时的需要,且使用起来各有其便.从直角坐标与极坐标的关系, 我们可以用复数的模。实部是cos,虚部是sin。也就是说,任一非零复数。,即(由图 1.1)原创 2024-02-17 21:02:28 · 1252 阅读 · 0 评论 -
复变函数论1-1-复数3-3-1-复数的表示形式2:三角形式【z=r(cosθ+isinθ)】【单位复数:z=cosθ+isinθ,其中r=1】【欧拉公式:eⁱᶿ=cosθ+isinθ】
复数的这三种表示法可以互相转换,以适应讨论不同问题时的需要,且使用起来各有其便.从直角坐标与极坐标的关系, 我们可以用复数的模。实部是cos,虚部是sin。也就是说,任一非零复数。,即(由图 1.1)原创 2024-04-30 08:14:39 · 1174 阅读 · 0 评论 -
复变函数论1-1-复数3-3-1-复数的表示形式3:指数形式【z=reⁱᶿ=∣z∣eⁱᵃʳᵍᶻ】【欧拉公式:exp(iθ)=eⁱᶿ=cosθ+isinθ】【exp(iπ)=cosπ+isinπ=-1】
复数的这三种表示法可以互相转换,以适应讨论不同问题时的需要,且使用起来各有其便.从直角坐标与极坐标的关系, 我们可以用复数的模。实部是cos,虚部是sin。也就是说,任一非零复数。,即(由图 1.1)原创 2024-04-30 08:21:36 · 1015 阅读 · 0 评论 -
复变函数论1-1-复数3-4-两复数乘除1:z₁z₂=r₁eⁱᶿ¹·r₂eⁱᶿ²=r₁r₂eⁱ⁽ᶿ¹⁺ᶿ²⁾、z₁/z₂=r₁eⁱᶿ¹/(r₂eⁱᶿ²)=r₁/r₂eⁱ⁽ᶿ¹⁻ᶿ²⁾
上面关于辐角的两个等式 ( 1.12) ,两边各是无穷多个数 (角度) 的数集. 例如, 设 ( 1.12) 的第一个等式右边。(1.12) 的第 一个等意味着, 在等式左边取出一个数值 (相当于取定一个。应理解为辐角的某个特定值, 不必是主值. 若均理解为主值, 则两端允许相差。的值, 使得右边的和数等于左边之值;利用复数的指数形式作乘除法较简单. 因由。公式 (1.12) 的。至少有一个为零. 试证之.所对应的向量的长度伸缩。由实数域中对应的结果知。至少有一个为零. 所以。得到的 (图1.7).原创 2024-02-12 00:26:22 · 1125 阅读 · 0 评论 -
复变函数论1-1-复数3-4-两复数乘除2:几何意义【将对应的向量长度伸缩&角度旋转】【z₁z₂所对应的向量是把z₁对应的向量的长度伸缩r₂=|z₂|倍,然后再旋转θ₂=argz₂】
上面关于辐角的两个等式 ( 1.12) ,两边各是无穷多个数 (角度) 的数集. 例如, 设 ( 1.12) 的第一个等式右边。(1.12) 的第 一个等意味着, 在等式左边取出一个数值 (相当于取定一个。应理解为辐角的某个特定值, 不必是主值. 若均理解为主值, 则两端允许相差。的值, 使得右边的和数等于左边之值;值), 等式右边也可以相应地分别找出。倍, 然后再旋转一个角度。至少有一个为零. 试证之.所对应的向量的长度伸缩。公式 (1.12) 的。至少有一个为零. 所以。得到的 (图1.7).原创 2024-04-30 08:32:19 · 835 阅读 · 0 评论 -
复变函数论1-1-复数3-4-两复数乘除3:单位复数【①:以“单位复数”乘任何数,几何上相当于将此数所对应向量旋转一个角度;②:iz相当于将z所对应向量旋转π/2,i称为旋转乘数 】
上面关于辐角的两个等式 ( 1.12) ,两边各是无穷多个数 (角度) 的数集. 例如, 设 ( 1.12) 的第一个等式右边。(1.12) 的第 一个等意味着, 在等式左边取出一个数值 (相当于取定一个。应理解为辐角的某个特定值, 不必是主值. 若均理解为主值, 则两端允许相差。的值, 使得右边的和数等于左边之值;值), 等式右边也可以相应地分别找出。倍, 然后再旋转一个角度。至少有一个为零. 试证之.所对应的向量的长度伸缩。公式 (1.12) 的。至少有一个为零. 所以。得到的 (图1.7).原创 2024-04-30 09:10:32 · 649 阅读 · 0 评论 -
复变函数论1-1-复数3-4-两复数乘除4:向量的旋转方向【①:逆时针方向旋转的角度为正;②:顺时针方向旋转的角度为负】【当把复数作为向量看待时,其乘法含义不同于向量的内积、外积】
上面关于辐角的两个等式 ( 1.12) ,两边各是无穷多个数 (角度) 的数集. 例如, 设 ( 1.12) 的第一个等式右边。(1.12) 的第 一个等意味着, 在等式左边取出一个数值 (相当于取定一个。应理解为辐角的某个特定值, 不必是主值. 若均理解为主值, 则两端允许相差。的值, 使得右边的和数等于左边之值;利用复数的指数形式作乘除法较简单. 因由。值), 等式右边也可以相应地分别找出。得到的 (图1.7).所对应的向量的长度伸缩。公式 (1.12) 的。各表示某个适当整数,原创 2024-04-30 09:15:11 · 998 阅读 · 0 评论 -
复变函数论1-1-复数4-1-1:复数的乘幂【zⁿ=rⁿeⁱⁿᶿ=rⁿ(cosnθ+isinnθ)】【乘幂是乘积的特例,是n个相同因子z=reⁱᶿ的乘积】
注 在实数域内, 规定 -8 的三次方根为 -2 , 即规定。的圆周均匀地分布着, 即它们是内接于该圆周的正。是一致的.现在,我们将 (1.14) 表示为。时,得棣莫弗(De Moivre)公式。作为乘积的特例, 我们考虑非零复数。就可得出 (1.13) 的总共。个, 它们沿中心在原点、半径为。为 1 的 5 次方根. 即。次方根, 相当于解二项方程。, 则 (1.13) 变形为。就只取上述三值之一的实值。个相同因子的乘积. 设。个不同的根. 所以记号。, 下面我们来求它们.例 1.10 解方程。原创 2024-02-12 00:28:12 · 1617 阅读 · 0 评论 -
复变函数论1-1-复数4-1-2:DeMoivre/棣莫弗公式【(cosθ+isinθ)ⁿ=cosnθ+isinnθ】【从复数的乘幂推导而得到】
作为乘积的特例, 我们考虑非零复数。个相同因子的乘积. 设。原创 2024-04-30 08:46:43 · 742 阅读 · 0 评论 -
复变函数论1-1-复数4-2-1:复数的方根【z的n次方根共n个不同根,ωₖ=(ⁿ√z)ₖ=exp(i·2kπ/n)·ω₀;其中:ω₀=ⁿ√r·exp(iθ/n)】
(取算术根) 的圆周均匀地分布着, 即它们是内接于该圆周的正。注 在实数域内, 规定 -8 的三次方根为 -2 , 即规定。是一致的.现在,我们将 (1.14) 表示为。就可得出 (1.13) 的总共。个, 它们沿中心在原点、半径为。为 1 的 5 次方根. 即。次方根, 相当于解二项方程。, 则 (1.13) 变形为。就只取上述三值之一的实值。个顶点 (图1.8 是。个不同的根. 所以记号。重合了. 故非零复数。, 下面我们来求它们.,为了在复平面上表示。原创 2024-03-19 22:56:49 · 1790 阅读 · 0 评论 -
复变函数论1-1-复数4-2-2:复数方根的几何意义【z的n次方根共有n个,它们沿着中心在原点、半径为ⁿ√r(取算术根)的圆周均匀地分布着,即它们是内接于该圆周的正n边形的n个顶点】
(取算术根) 的圆周均匀地分布着, 即它们是内接于该圆周的正。注 在实数域内, 规定 -8 的三次方根为 -2 , 即规定。就可得出 (1.13) 的总共。现在,我们将 (1.14) 表示为。个, 它们沿中心在原点、半径为。为 1 的 5 次方根. 即。次方根, 相当于解二项方程。, 则 (1.13) 变形为。就只取上述三值之一的实值。个不同的根. 所以记号。, 下面我们来求它们.原创 2024-04-30 09:03:51 · 833 阅读 · 0 评论 -
复变函数论1-1-复数5:共轭复数【设z=x+iy,则z的共轭复数为z*=x-iy】【复平面上, z与z*两点关于实轴是对称点】【Argz=-Argz*】
熟练、灵活地运用这些简单公式,对化简计算、解答问题都会带来方便.并应用此等式证明三角不等式 (1.2).就可导出三角不等式(1.2).与 1的大小, 即比较。两点关于实轴是对称点.其次,由所证等式以及。原创 2024-02-12 00:29:39 · 1431 阅读 · 0 评论 -
复变函数论1-1-复数6-复数在几何上的应用举例1:曲线的复数方程【①:z平面上以原点为圆心,R为半径的圆周的方程为|z|=R;②:z平面上以z₀为圆心,R为半径的圆周的方程为|z-z₀|=R】
下面我们举例说明两方面的问题: 怎样用复数所适合的方程 (或不等式)来刻画适合某种几何条件的平面图形, 怎样从复数所适合的方程 (或不等式)来确定平面图形的特征.注 由本章习题 (一) 8,10 可见, 直线和圆周等平面曲线皆可用多种形式给出其方程.两点的直线 (图 1.9) 的参数方程为。两点的线段的参数方程为。平面上以原点为圆心,为半径的圆周的方程为。为半径的圆周的方程为。原创 2024-02-12 00:30:31 · 1168 阅读 · 0 评论 -
复变函数论1-1-复数6-复数在几何上的应用举例2:应用复数证明几何问题【三个复数z₁、z₂、z₃成为一等边三角形的三顶点的充要条件是满足等式:z₁²+z₂²+z₃²=z₁z₂+z₂z₃+z₃z₁】
成为一个等边三角形的三顶点的充要条件是它们满足等式。是等边三角形的充要条件为:向量。设三角形的三个顶点分别为。对应的三个顶角分别为。(如图 1.11).于是。证明三角形的内角和等于。根据公式(1.12)'.两端平方化简, 即得。原创 2024-03-19 23:06:12 · 984 阅读 · 0 评论 -
复变函数论1-1-复数7:由实数构造复数的方法之推广【实数域上有限维可做除法的代数的维数只能是1,2,4,8】【除了实数、复数、四元数和八元数,实可除代数不能再扩充】
要求满足加、减、乘、除运算和分配律. 很多数学家都作了尝试, 都没有成功.至此我们知道,除了实数、复数、四元数和八元数,实可除代数不能再打充了.于是创造了负数, 就有了整数集. 为了能够进行除法, 又创造了分数,要求满足加、减、乘、除运算和分配律, 这就产生一个数系, 通常记为。要求满足加、减、乘、除运算和分配律, 这就产生一个数系, 通常记为。人类最早创造了自然数, 可以进行加法和乘法, 但不能进行减法,生成一个数系, 要求对加、减、乘、除运算封闭,是一个数, 显然它不是实数, 称为虚数.原创 2024-02-12 00:35:08 · 1063 阅读 · 0 评论 -
复变函数论1-2-复平面ℂ上的点集1-基本概念1:邻域、去心邻域、闭邻域【∣z−z₀∣<r所确定的平面点集:点z₀的邻域】【0<∣z−z₀∣<r:去心邻域】【∣z−z₀∣≤r:闭邻域】
由不等式∣z−z0∣ρ∣z−z0∣ρ所确定的平面点集(以后平面点集均简称点集),就是以z0z_{0}z0为圆心, 以ρ\rhoρ为半径的圆的内部, 称为点z0z_{0}z0的ρ\rhoρ邻域, 常记为Nρz0Nρz0;并称0∣z−z0∣ρ0∣z−z0∣ρ为点z0z_{0}z0的去心ρ\rhoρ邻域, 常记为Nρz0z0Nρz0z0。原创 2024-04-30 10:01:33 · 958 阅读 · 0 评论 -
复变函数论1-2-复平面ℂ上的点集1-基本概念2-点的分类1:聚点(极限点)【设点α∈ℂ,点集E⊂ℂ,若∀r>0,均有:U°(α,r)∩E≠∅,则称点α为E的聚点;点集E的全部聚点所成集合用E‘表示】
考虑点集EEE. 若平面上一点z0z_{0}z0(不必属于EEE) 的任意邻域都有EEE∀r0∀r0,均有U∘z0r∩E≠ϕU∘z0r∩Eϕ】, 则称z0z_{0}z0为EEE的聚点或极限点如下图所示:若z0z_{0}z0属于EEE, 但非EEE的聚点, 则称z0z_{0}z0为EEE的孤立点;若z0z_{0}z0不属于EEE, 又非EEE。原创 2024-04-30 10:15:36 · 660 阅读 · 0 评论 -
复变函数论1-2-复平面ℂ上的点集1-基本概念2-点的分类2:内点【设点α∈ℂ,点集E⊂ℂ,若∃r>0,使得:U(α,r)⊂E,则称点α为E的内点】
复变函数论1-2-复平面上的点集1-平面点集的几个基本概念2-复平面ℂ上的点的分类2:内点【设点α∈ℂ,点集E⊂ℂ,若∃r>0,使得:U(α,r)⊂E,则称点α为E的内点】原创 2024-04-30 10:18:35 · 169 阅读 · 0 评论 -
复变函数论1-2-复平面ℂ上的点集1-基本概念2-点的分类3:边界点【设点α∈ℂ,点集E⊂ℂ,若∀r>0,有:U(α,r)∩E≠∅且U(α,r)∩Eᶜ≠∅,则称点α为E边界点,记为:∂E】
其中:Ec表示点集E的余集。原创 2024-04-30 10:25:59 · 185 阅读 · 0 评论 -
复变函数论1-2-复平面ℂ上的点集1-基本概念2-点的分类4:孤立点、外点【若z₀属于E,但非E的聚点,则称z₀为E的孤立点】【若z₀不属于E,又非E的聚点,则称z₀为E的外点】
若 z0属于 E, 但非 E的聚点, 则称 z0为 E的;若 z0不属于 E, 又非 E的聚点, 则称 z0为 E的.原创 2024-04-30 10:56:34 · 400 阅读 · 0 评论 -
复变函数论1-2-复平面ℂ上的点集1-基本概念3-集合分类1:开集【设复平面集合E⊂ℂ,若E的所有点均为其内点,则称:E为开集(不包括边界点)】
设复平面集合E⊂ℂ,若E的所有点均为其内点,则称:E为开集(不包括边界点)原创 2024-04-30 10:42:17 · 310 阅读 · 0 评论 -
复变函数论1-2-复平面ℂ上的点集1-基本概念3-集合分类2:闭集【设复平面集合E⊂ℂ,若E的余集Eᶜ是开集,则称:E为闭集(包括边界点)】
设复平面集合E⊂ℂ,若E的余集Eᶜ是开集,则称:E为闭集(包括边界点)原创 2024-04-30 10:43:48 · 357 阅读 · 0 评论 -
复变函数论1-2-复平面ℂ上的点集1-基本概念3-集合分类3:有界集、无界集【若∃U(α,r),使得:E⊂U(α,r),则称E为“有界集”,否则称E为“无界集”】
若∃U(α,r),使得:E⊂U(α,r),则称E为有界集。原创 2024-04-30 10:48:05 · 303 阅读 · 0 评论 -
复变函数论1-2-复平面ℂ上的点集1-基本概念3-集合分类4:紧集【若集合E是有界闭集】
复变函数论1-2-复平面ℂ上的点集1-基本概念3-集合分类4:紧集【若集合E是有界闭集】原创 2024-04-30 12:00:39 · 159 阅读 · 0 评论 -
复变函数论1-2-复平面ℂ上的点集2-1-区域1:区域、闭域【具备下列性质的非空点集D称为区域:①D为开集;②D中任意两点可用全在D中的折线连接】【闭域=区域+边界】【区域都是开的,不包含它的边界】
具备下列性质的非空点集DDD称为区域DDD为开集.DDD中任意两点可用全在DDD中的折线连接 (图 1.12).区域DDD加上它的边界CCC称为闭域, 记为DˉDCDˉDC注意:区域都是开的, 不包含它的边界点.例 1.18试证:点集EEE的边界∂E\partial E∂E是闭集.即证∂E′⊆∂E∂E′⊆∂E证设zzz为∂E\partial E∂E的聚点. 取zzz的任意εε邻域NtzN_{t}(z)原创 2024-03-19 23:17:17 · 1297 阅读 · 0 评论 -
复变函数论1-2-复平面ℂ上的点集2-1-区域2:圆【z平面上以O为圆心,①圆形区域:R为半径的圆(|z|<R);②圆形闭域:R为半径的闭圆(|z|≤R)】【单位圆(|z|<1)、圆周(|z|=R)】
为边界, 且都是有界的.我们称。平面上以原点为圆心,平面上以原点为圆心,原创 2024-04-30 12:18:26 · 962 阅读 · 0 评论 -
复变函数论1-2-复平面ℂ上的点集2-1-区域3:无界区域【z平面上以实轴Imz=0为边界的两无界区域:上半z平面Imz>0、下半z平面Imz<0】【以虚轴为边界的两无界区域Rez<0、Rez>0】
为边界的两个无界区域是。为边界的两个无界区域是。原创 2024-04-30 12:24:00 · 508 阅读 · 0 评论 -
复变函数论1-2-复平面ℂ上的点集2-1-区域4:带形区域【y₁<Imz<y₂】
图 1.14 所示的。原创 2024-04-30 12:27:31 · 244 阅读 · 0 评论 -
复变函数论1-2-复平面ℂ上的点集2-2-曲线1:连续曲线【设x(t)、y(t)是实变数t的实函数,且在[α,β]上连续,则由复数方程z=x(t)+iy(t)所决定的点集C称为z平面上的一条连续曲线】
设xtx(t)xt及yty(t)yt是实变数ttt的两个实函数, 它们在闭区间αβαβ上连续, 则由方程组xxtyytα⩽t⩽βx=x(t), \\y=y(t)xxtyytα⩽t⩽β或由复数方程zxtiytα⩽t⩽β1.16简记为zzt&(简记为 z=z(t))zxtiytα⩽t⩽β1.16简记为zzt))所决定的点集CCC, 称为zzz。原创 2024-03-19 23:31:08 · 661 阅读 · 0 评论 -
复变函数论1-2-复平面ℂ上的点集2-2-曲线2:曲线C的重(chong)点【对满足α<t₁<β,α<t₂<β,t₁≠t₂的t₁及t₂,当z(t₁)=z(t₂)成立时,点z(t₁)称为曲线C的重点】
设xtx(t)xt及yty(t)yt是实变数ttt的两个实函数, 它们在闭区间αβαβ上连续, 则由方程组xxtyytα⩽t⩽βx=x(t), \\y=y(t)xxtyytα⩽t⩽β或由复数方程zxtiytα⩽t⩽β1.16简记为zzt&(简记为 z=z(t))zxtiytα⩽t⩽β1.16简记为zzt))所决定的点集CCC称为zzz。原创 2024-05-01 10:59:04 · 416 阅读 · 0 评论 -
复变函数论1-2-复平面ℂ上的点集2-2-曲线3:Jordan/若尔当/简单曲线【简单曲线:无重点的连续曲线(线段、圆弧)】【简单曲线是有界闭集】【头尾相接的简单曲线称为简单闭曲线(圆周、椭圆周)】
设xtx(t)xt及yty(t)yt是实变数ttt的两个实函数, 它们在闭区间αβαβ上连续, 则由方程组xxtyytα⩽t⩽βx=x(t), \\y=y(t)xxtyytα⩽t⩽β或由复数方程zxtiytα⩽t⩽β1.16简记为zzt&(简记为 z=z(t))zxtiytα⩽t⩽β1.16简记为zzt))所决定的点集CCC, 称为zzz。原创 2024-04-30 13:32:30 · 734 阅读 · 0 评论 -
复变函数论1-2-复平面ℂ上的点集2-3:可求长的弧【设弧的参数方程z=z(t),∀实数列{tₙ}对应弧上点zⱼ=z(tⱼ),若∑│z(tⱼ)-z(tⱼ₋₁)│有上界,则称弧是可求长的,上确界为弧长】
设连续弧ABA BAB的参数方程为zztα⩽t⩽βzztα⩽t⩽β任取实数列tntnαt0t1t2⋯tn−1tnβ1.17αt0t1t2⋯tn−1tnβ1.17并且考虑ABA BABzjztjj012⋯nzjztjj012⋯n将它们用一折线QnQ_{n}Qn连接起来,QnQ_{n}Qn。原创 2024-04-29 21:42:54 · 395 阅读 · 0 评论 -
复变函数论1-2-复平面ℂ上的点集2-4:光滑曲线【设简单曲线C的参数方程为z=x(t)+iy(t);在α⩽t⩽β 上x´(t)及y´(t)存在、连续且不全为零;则C为光滑曲线】
设连续弧ABA BAB的参数方程为zztα⩽t⩽βzztα⩽t⩽β任取实数列tntnαt0t1t2⋯tn−1tnβ1.17αt0t1t2⋯tn−1tnβ1.17并且考虑ABA BABzjztjj012⋯nzjztjj012⋯n将它们用一折线QnQ_{n}Qn连接起来,QnQ_{n}Qn。原创 2024-03-19 23:36:02 · 926 阅读 · 0 评论 -
复变函数论1-2-复平面ℂ上的点集2-5:逐段光滑曲线【由有限条光滑曲线衔接而成的连续曲线称为逐段光滑曲线】【逐段光滑曲线必是可求长曲线】【简单(闭)曲线不一定可求长】【简单折线是逐段光滑曲线】
由有限条光滑曲线衔接而成的连续曲线称为逐段光滑曲线特别,简单折线是逐段光滑曲线.逐段光滑曲线必是可求长曲线, 但简单曲线 (或简单闭曲线) 却不一定可求长.例 1.24设简单曲线JJJ的参数方程为xxttyyttsin1tt≠0时,0⩽t⩽10t0时t \sin \frac{1}{t}, & t \neq 0 \text { 时, } \quad(0 \leqslant t \leqslant 1), \\原创 2024-04-29 21:44:34 · 673 阅读 · 0 评论