数据分析
数据分析
u013250861
这个作者很懒,什么都没留下…
展开
-
Plotly : 超好用的Python可视化工具
Plotly是一个通用且功能强大的Python数据可视化库。本文介绍了一系列高级示例,展示了各种绘图类型和交互功能。请尝试使用所提供的代码示例,深入了解Plotly的功能,提高大家数据可视化的技能。原创 2024-07-23 00:46:57 · 813 阅读 · 0 评论 -
不平衡分类(一)-综述:imblearn/imbalanced-learn库【提供了许多重采样技术,常用于显示强烈类间不平衡的数据集中】【降采样、过采样(SMOTE )】
一、imblearn/imbalanced-learn库的简介imblearn/imbalanced-learn是一个python包,它提供了许多重采样技术,常用于显示强烈类间不平衡的数据集中。它与scikit learn兼容,是 scikit-learn-contrib 项目的一部分。1、imblearn/imbalanced-learn库的安装pip install imblearnpip install imbalanced-learnpip install -U imbalanced-le原创 2022-04-23 23:08:35 · 1272 阅读 · 0 评论 -
不平衡分类(二)-过采样(SMOTE)【Synthetic Minority Over-Sampling Technique ,“人工少数类过采样法“】
SMOTE的全称是Synthetic Minority Over-Sampling Technique 即“人工少数类过采样法”,非直接对少数类进行重采样,而是设计算法来人工合成一些新的少数样本。一、SMOTE原理1、SMOTE步骤__1.选一个正样本红色圈覆盖2、SMOTE步骤__2.找到该正样本的K个近邻(假设K = 3)3、SMOTE步骤__3.随机从K个近邻中选出一个样本绿色的4、SMOTE步骤__4.在正样本和随机选出的这个近邻之间的连线上,随机找一点。这个点就是人工合成的新正原创 2022-04-23 23:15:43 · 3244 阅读 · 0 评论 -
数据可视化制图工具:GIS(地理信息系统)【将表格型数据转换为地理图形显示】
GIS,即地理信息系统,它以地理空间为基础,采用地理模型分析方法,实时提供多种空间和动态的地理信息,是一种为地理研究和地理决策服务的计算机技术系统。其基本功能是将表格型数据转换为地理图形显示,然后对显示结果浏览,操作和分析。那么,如果将GIS技术与数据可视化结合,能帮助我们什么呢?...原创 2022-05-25 23:36:14 · 1054 阅读 · 0 评论 -
数据可视化制图工具:Echarts(基于JS)
1.1 什么是ECharts?ECharts是一个使用 JavaScript 实现的"数据可视化"库, 它可以流畅的运行在 PC 和移动设备上什么是数据可视化?也就是可以将数据通过图表的形式展示出来,ECharts提供的图表类型:ECharts 提供了常见的折线图、柱状图、散点图、饼图、K线图,用于统计的盒形图用于地理数据可视化的地图、热力图、线图,用于关系数据可视化的关系图、treemap、旭日图,多维数据可视化的平行坐标还有用于 BI 的漏斗图,仪表盘,并且支持图与图之间的混搭参考原创 2022-05-25 23:33:33 · 941 阅读 · 0 评论 -
数据分析:工作平台【非编程类:STATA、SPASS、MatLab】【编程类:Python、R语言】
数据分析:工作平台【非编程类:STATA、SPASS、MatLab】【编程类:Python、R语言】原创 2022-04-03 14:54:25 · 247 阅读 · 0 评论 -
数据分析-第三方库(工具包):GIS【作用:空间数据分析、数据清洗、数据处理】
数据分析-第三方库(工具包):GIS【作用:空间数据分析、数据清洗、数据处理】原创 2022-04-03 13:24:08 · 736 阅读 · 0 评论 -
数据分析:概述【数据预处理(数据清洗:缺失值、异常值、特殊值...)(数据整合:查找、筛选、分类、组合...)】【分析算法构建(基本特征、统计分析、数据建模、功能封装)】【结论与表达(可视化)】
数据分析:概述【数据预处理(数据清洗:缺失值、异常值、特殊值…)(数据整合:查找、筛选、分类、组合…)】【分析算法构建(基本特征、统计分析、数据建模、功能封装)】【结论与表达(可视化)】...原创 2022-04-03 12:50:40 · 696 阅读 · 0 评论 -
Python数据可视化制图工具:Matplotlib(基本图表)、Geoplotlib(地理分析)、Seaborn、Bokeh、gephi(关系分析)
Python数据可视化制图工具:Matplotlib、Geoplotlib、Seaborn、Bokeh、gephi原创 2022-04-03 11:45:06 · 4450 阅读 · 0 评论 -
数据可视化制图工具:【免费:Excel、Echarts(基于JS)、D3、Geoplotlib、GIS、BDP(免费BI)】【收费:Tableau(收费BI)、PowerBI】
数据可视化制图工具:【免费:Excel、Echarts/Geoplotlib、GIS、BDP(免费BI)】【收费:Tableau(收费BI)、PowerBI】原创 2022-04-03 11:19:05 · 4216 阅读 · 0 评论 -
数据分析:“数据分析”、“数据挖掘”、“机器学习” 三者之间的关系【数学公式的难易程度:数据分析 < 数据挖掘 < 机器学习】
数据分析,数据挖掘,机器学习在研究上有一部分是重叠的,但侧重点不同。数据挖掘里面,流数据是一个很大的关注点,但在机器学习里面研究的就相对较少。同理,数据挖掘对统计学习理论也没有机器学习关注的多。你再看数据挖掘的教材,一般都有一章介绍数据管理以及数据可视化,这部分内容机器学习书通常是不介绍的。还有,基本上一些数据挖掘里面常见的算法在机器学习里面也不介绍,例如 FP-Growth 。数据分析里面会大量介绍数据可视化,但在数据挖掘和机器学习中占的篇幅都较小。按照数学公式的难易程度:数据分析 <原创 2021-04-14 21:47:49 · 730 阅读 · 0 评论 -
数据分析:数据分析的几个阶段【提出/发现问题 —> 获取并清洗数据 —> 建模 —> 调整优化 —> 输出结论】
当一个数据分析师跟别人聊天的时候,经常会被问一些问题:Q:数据分析人员能做什么?A:从纷繁的数据里提炼出有价值的信息并给公司提供支持啊。Q:你怎么提炼啊?A:写程序采集啊,清洗啊,用一定的算法计算数据内部联系,根据业务做出判断啊……Q:如果都是用已有的算法,这些事情为什么不能用现成的流程来做呢?或者为什么不能写成程序,让机器自己实现呢?A:呃…………作为一名数据分析师,跟人聊天聊成这样,非常常见也非常令人不爽。但我们数据分析师是不是仅能手工操作一些算法,等着机器和算法逐步取代我们么?并不是!原创 2021-04-14 20:40:52 · 2207 阅读 · 0 评论 -
数据分析:数据分析师学习路径【统计学、SQL、Excel、Python、机器学习】
数据分析入门之后有两个方向的职业选择:业务方向初级数据分析师 --> 商业分析师 --> 数据分析经理 --> 运营总监 --> 业务负责人技术方向初级数据分析师 --> 数据挖掘工程师 --> 数据开发工程师 --> AI工程师 --> 数据科学家对于初级的数据分析来说,要掌握的知识点都是一样的,当然每一种知识都有入门和专家的区别,短时间内我们能做到熟练运用这个水平就可以了。下面我总结一张数据分析领域的知识结构图:数据分析学习全路径一、1原创 2021-04-14 21:07:54 · 1810 阅读 · 0 评论