
CV/基于掩码的学习
微电子与电路
u013250861
这个作者很懒,什么都没留下…
展开
-
CV-掩码学习-模型-2021:MAE【在NLP和CV两大领域之间架起了一座更简便的桥梁】
同样,我们的MAE重建的像素不是语义实体。然而,我们观察到(如图4),我们的MAE推断出复杂的整体重建,表明它已经学习了许多视觉概念,即语义。直观点讲,就是事先遮住一些文本片段,让AI模型通过自监督学习,通过海量语料库的预训练,逐步掌握上下文语境,把这些被遮住的片段,用尽可能合乎逻辑的方式填回去。现在,何恺明的这篇文章把NLP领域已被证明极其有效的方式,用在了计算机视觉(CV)领域,而且模型更简单。此前,大名鼎鼎的GPT和BERT已经将大型自然语言处理(NLP)模型的性能提升到了一个新的高度。原创 2022-12-12 17:27:41 · 342 阅读 · 0 评论 -
CV-掩码模型:MAE、SimMIM
MAE发布以来,各种使用掩码技术的自监督掩码模型在其基础之上有了更进一步的研究。在本文中我们将探索一篇和MAE同期的工作:SimMIM: A Simple Framework for Masked Image Modeling,研究团队是微软亚研院,并在PyTorch中编写它,最后我们也会提供相关的代码。SimMIM的骨干网络是VIT,熟悉自监督学习的基础知识也非常有帮助,最后我们还要精通PyTorch,因为我们使用它来实现我们的模型。原创 2022-12-12 15:50:16 · 460 阅读 · 0 评论