NLP-信息抽取-三元组-联合抽取-Prompt-2022:UIE(通用信息抽取模型)【第四范式】【信息抽取{实体关系抽取、中文分词、精准实体标。情感分析}、文本纠错、问答系统、闲聊机器人、定制训练】

论文GitHub源码

UIE(Universal Information Extraction):Yaojie Lu等人在ACL-2022中提出了通用信息抽取统一框架UIE。该框架实现了实体抽取、关系抽取、事件抽取、情感分析等任务的统一建模,并使得不同任务间具备良好的迁移和泛化能力。为了方便大家使用UIE的强大能力,PaddleNLP借鉴该论文的方法,基于ERNIE 3.0知识增强预训练模型,训练并开源了首个中文通用信息抽取模型UIE。该模型可以支持不限定行业领域和抽取目标的关键信息抽取,实现零样本快速冷启动,并具备优秀的小样本微调能力,快速适配特定的抽取目标。

在这里插入图片描述
UIE的优势

  • 使用简单:用户可以使用自然语言自定义抽取目标,无需训练即可统一抽取输入文本中的对应信息。实现开箱即用,并满足各类信息抽取需求。
  • 降本增效:以往的信息抽取技术需要大量标注数据才能保证信息抽取的效果,为了提高开发过程中的开发效率,减少不必要的重复工作时间,开放域信息抽取可以实现零样本(zero-shot)或者少样本(few-shot)抽取,大幅度降低标注数据依赖,在降低成本的同时,还提升了效果。
  • 效果领先:开放域信息抽取在多种场景,多种任务上,均有不俗的表现。

参考资料:
起底NLP“大一统”模型:UIE统一信息抽取框架背后的技术本质、收益辨析及几点思考
综述|信息抽取的"第二范式"
GitHub:通用信息抽取 UIE(Universal Information Extraction)
PaddleNLP通用信息抽取技术UIE【一】产业应用实例:信息抽取{实体关系抽取、中文分词、精准实体标。情感分析等}、文本纠错、问答系统、闲聊机器人、定制训练
PaddleNLP–UIE(二)–小样本快速提升性能(含doccona标注)
uie模型微调个人总结
信息抽取新SOTA: UIE–首个结构化生成式信息抽取预训练语言模型,一统信息抽取四大任务
信息抽取大一统:百度中科院发布通用抽取模型UIE,刷新13个IE数据集SOTA!
PaddleNLP之UIE信息抽取小样本进阶(二)[含doccano详解]

### 关于通用信息抽取模型 PP-UIE #### 模型概述 PP-UIE 是一个强大的统一信息抽取框架,能够处理多种自然语言处理任务。该模型基于 PaddleNLP 平台开发,在多个下游任务上表现出色[^2]。 #### 功能特性 - **多模态支持**:不仅限于纯文本输入,还具备 OCR 和版面分析功能,适用于复杂场景下的文档理解。 - **高性能推理引擎**:兼容 CPU 及 Nvidia GPU 部署环境,并默认集成了 Paddle Inference、ONNX Runtime、OpenVINO 以及 TensorRT 推理后端,确保高效运行性能[^4]。 #### 安装与配置指南 为了使用 PP-UIE 进行模型微调并保存结果到特定位置,可以通过如下 Python 代码片段实现: ```python from paddlenlp import Taskflow # 初始化 UIE 模型实例 schema = ["时间", "地点"] # 自定义实体类别列表 ie = Taskflow("information_extraction", schema=schema, model="paddlenlp/PP-UIE-1.5B") # 微调过程中的超参数设置(此处仅为示意) training_args = { 'output_dir': './results', } # 执行微调操作并将最终版本存储起来 model.save_pretrained(training_args['output_dir']) ``` 上述脚本展示了如何加载预训练权重文件 `paddlenlp/PP-UIE-1.5B` 来初始化一个新的信息提取器对象;接着通过调整某些关键参数完成定制化需求;最后将经过优化后的网络结构及其对应的参数持久化至本地磁盘中以便后续应用或分享给其他开发者继续迭代改进。 #### 获取更多资源 对于希望深入了解 PP-UIE 或者尝试其最新扩展组件如 UIE-X 的研究人员来说,官方 GitHub 页面提供了详尽的技术文档和支持材料,涵盖了从基础概念讲解一直到高级应用场景实践等多个方面的内容[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值