数学分析(十四)-幂级数2-函数的幂级数展开1-泰勒级数1:f(x₀)+f′(x₀)(x-x₀)+…+f⁽ⁿ⁾(x₀)/n!(x-x₀)ⁿ【具有任意阶导数的函数,其泰勒级数并不一定能收敛于该函数本身】

本文探讨了泰勒级数的概念,指出即使函数在某点具有任意阶导数,其泰勒级数并不一定收敛于该函数本身。通过举例说明,如函数f(x)=e^(-r^2),其在x=0处的所有阶导数为0,导致泰勒级数在(-∞, +∞)上收敛但和函数S(x)=0,不等于原函数f(x)在非零x处的值。这揭示了泰勒级数收敛性和函数表达的复杂性。" 72971156,5764537,分式运算详解:约分、通分与化简,"['数学', '代数']
摘要由CSDN通过智能技术生成

在第六章 § 3 § 3 §3 的泰勒定理中曾指出, 若函数 f f f 在点 x 0 x_{0} x0的某邻域上存在直至 n + 1 n+1 n+1 阶的连续导数, 则

f ( x ) = f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) + f ′ ′ ( x 0 ) 2 ! ( x − x 0 ) 2 + ⋯ + f ( n ) ( x 0 ) n ! ( x − x 0 ) n + R n ( x ) , ( 1 ) \begin{aligned} f(x)=f\left(x_{0}\right)+ & f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{f^{\prime \prime}\left(x_{0}\right)}{2 !}\left(x-x_{0}\right)^{2}+\cdots+ \frac{f^{(n)}\left(x_{0}\right)}{n !}\left(x-x_{0}\right)^{n}+R_{n}(x), \quad\quad(1) \end{aligned} f(x)=f(x0)+f(x0)(xx0)+2!f′′(x0)(xx0)2++

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值