复变函数论6-留数理论及其应用3-辐角原理及其应用3:鲁歇 (Rouché) 定理

鲁歇定理是复变函数论中的一个重要定理,它阐述了在特定条件下,两个解析函数的零点分布情况。定理表明,如果函数f(z)在周线C内部解析且在C上的绝对值大于另一个解析函数φ(z),那么f(z)和f(z)+φ(z)在C内部的零点数量相同。这个定理在分析函数零点分布时非常有用,并能用于证明其他重要定理,如单叶解析函数的性质和分歧覆盖定理。
摘要由CSDN通过智能技术生成

下面的定理是辐角原理的一个推论, 在考察函数的零点分布时, 用起来更为方便.

定理 6.10(鲁歇定理)

C C C 是一条周线,函数 f ( z ) f(z) f(z) φ ( z ) \varphi(z) φ(z)满足条件:

(1) 它们在 C C C 的内部均解析, 且连续到 C C C.
(2) 在 C C C 上, ∣ f ( z ) ∣ > ∣ φ ( z ) ∣ |f(z)|>|\varphi(z)| f(z)>φ(z).

则函数 f ( z ) f(z) f(z) f ( z ) + φ ( z ) f(z)+\varphi(z) f(z)+φ(z) C C C 的内部有同样多 (几阶算作几个)的零点, 即

N ( f + φ , C ) = N ( f , C ) . N(f+\varphi, C)=N(f, C) . N(f+φ,C)=N(f,C).


由假设知 f ( z ) f(z) f(z) f ( z ) + φ ( z ) f(z)+\varphi(z) f(z)+φ(z) C C C 的内部解析, 且连续到 C C C,在 C C C 上有 ∣ f ( z ) ∣ > 0 |f(z)|>0 f(z)>0,

∣ f ( z ) + φ ( z ) ∣ ⩾ ∣ f ( z ) ∣ − ∣ φ ( z ) ∣ > 0. |f(z)+\varphi(z)| \geqslant|f(z)|-|\varphi(z)|>0 . f(z)+φ(z)f(z)φ(z)>0.

这样一来, 这两个函数 f ( z ) f(z) f(z) f ( z ) + φ ( z ) f(z)+\varphi(z) f(z)+φ(z) 都满足定理 6.9及其注的条件. 由于这两个函数在 C C C 的内部解析, 于是由 (6.28), 只需证明

Δ c arg ⁡ [ f ( z ) + φ ( z ) ] = Δ c arg ⁡ f ( z ) . \Delta_{c} \arg [f(z)+\varphi(z)]=\Delta_{c} \arg f(z) . Δcarg[f(z)+φ(z)]=Δcargf(z).

由关系式

f ( z ) + φ ( z ) = f ( z ) [ 1 + φ ( z ) f ( z ) ] , Δ c arg ⁡ [ f ( z ) + φ ( z ) ] = Δ c arg ⁡ f ( z ) + Δ c arg ⁡ [ 1 + φ ( z ) f ( z ) ] , \begin{array}{c} f(z)+\varphi(z)=f(z)\left[1+\frac{\varphi(z)}{f(z)}\right], \\ \Delta_{c} \arg [f(z)+\varphi(z)]=\Delta_{c} \arg f(z)+\Delta_{c} \arg \left[1+\frac{\varphi(z)}{f(z)}\right], \end{array} f(z)+φ(z)=f(z)[1+f(z)φ(z)],Δcarg[f(z)+φ(z)]=Δcargf(z)+Δcarg[1+f(z)φ(z)],

根据条件 (2), 当 z z z 沿 C C C 变动时 ∣ φ ( z ) / f ( z ) ∣ < 1 |\varphi(z) / f(z)|<1 φ(z)/f(z)<1. 借助函数 η = 1 + φ ( z ) f ( z ) \eta=1+\frac{\varphi(z)}{f(z)} η=1+f(z)φ(z) z z z 平面上的周线 C C C 变成 η \eta η
平面上的闭曲线 Γ \Gamma Γ.于是 Γ \Gamma Γ 全在圆周 ∣ η − 1 ∣ = 1 |\eta-1|=1 η1∣=1 的内部 (图6.19), 而原点 η = 0 \eta=0 η=0 又不在此圆周的内部. 即是说, 点 η \eta η不会围着原点 η = 0 \eta=0 η=0 绕行. 故

Δ c arg ⁡ [ 1 + φ ( z ) f ( z ) ] = 0 , \Delta_{c} \arg \left[1+\frac{\varphi(z)}{f(z)}\right]=0, Δcarg[1+f(z)φ(z)]=0,

由 (6.31) 即知 (6.30) 为真.

例 6.23
n n n 次多项式

p ( z ) = a 0 z n + ⋯ + a 1 z n − t + ⋯ + a n ( a 0 ≠ 0 ) p(z)=a_{0} z^{n}+\cdots+a_{1} z^{n-t}+\cdots+a_{n} \quad\left(a_{0} \neq 0\right) p(z)=a0zn++a1znt++an(a0=0)

在这里插入图片描述
符合条件

∣ a 1 ∣ > ∣ a 0 ∣ + ⋯ + ∣ a i − 1 ∣ + ∣ a i + 1 ∣ + ⋯ + ∣ a n ∣ . \left|a_{1}\right|>\left|a_{0}\right|+\cdots+\left|a_{i-1}\right|+\left|a_{i+1}\right|+\cdots+\left|a_{n}\right| . a1>a0++ai1+ai+1++an.

试证 p ( z ) p(z) p(z) 在单位圆 ∣ z ∣ < 1 |z|<1 z<1 内有 n − t n-t nt 个零点.


f ( z ) = a 1 z n − 1 f(z)=a_{1} z^{n-1} f(z)=a1zn1,

φ ( z ) = a 0 z n + ⋯ + a 1 − 1 z n − t + 1 + a 1 + 1 z n − t − 1 + ⋯ + a n , \varphi(z)=a_{0} z^{n}+\cdots+a_{1-1} z^{n-t+1}+a_{1+1} z^{n-t-1}+\cdots+a_{n}, φ(z)=a0zn++a11znt+1+a1+1znt1++an,

易于验证在单位圆周 ∣ z ∣ = 1 |z|=1 z=1 上,有

∣ f ( z ) ∣ > ∣ φ ( z ) ∣ . |f(z)|>|\varphi(z)| . f(z)>φ(z)∣.

依鲁歇定理知, p ( z ) = f ( z ) + φ ( z ) p(z)=f(z)+\varphi(z) p(z)=f(z)+φ(z) 在单位圆 ∣ z ∣ < 1 |z|<1 z<1 内的零点, 与 f ( z ) = a i z n − 1 f(z)=a_{i} z^{n-1} f(z)=a

  • 19
    点赞
  • 24
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值