数学分析(九)-定积分5-3:泰勒公式的积分型余项【Rₙ(x)=1/n!∫ˣₓₒf⁽ⁿ⁺¹⁾(t)(x-t)ⁿdt】

本文详细介绍了泰勒定理,特别是带有拉格朗日型余项的泰勒公式,并通过数学推导得到积分型余项的表达式。通过推广的分部积分公式,展示了如何从积分角度理解泰勒公式的余项,并给出了柯西型余项的形式。
摘要由CSDN通过智能技术生成

定理 6.10 (泰勒定理) 【带有拉格朗日型余项的泰勒公式】

若函数 f f f [ a , b ] [a, b] [a,b] 上存在直至 n n n阶的连续导函数, 在 ( a , b ) (a, b) (a,b)上存在 ( n + 1 ) (n+1) (n+1) 阶导函数, 则对任意给定的 x , x 0 ∈ [ a , b ] x, x_{0} \in[a, b] x,x0[a,b], 至少存在一点 ξ ∈ ( a , b ) \xi \in(a, b) ξ(a,b), 使得

f ( x ) = f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) + f ′ ′ ( x 0 ) 2 ! ( x − x 0 ) 2 + ⋯ + f ( n ) ( x 0 ) n ! ( x − x 0 ) n + f ( n + 1 ) ( ξ ) ( n + 1 ) ! ( x − x 0 ) n + 1 ( 7 ) \begin{aligned} f(x)= & f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{f^{\prime \prime}\left(x_{0}\right)}{2 !}\left(x-x_{0}\right)^{2}+\cdots+ \frac{f^{(n)}\left(x_{0}\right)}{n !}\left(x-x_{0}\right)^{n}+\frac{f^{(n+1)}(\xi)}{(n+1) !}\left(x-x_{0}\right)^{n+1} \quad(7) \end{aligned} f(x)=f(x0)+f(x0)(xx0)+2!f′′(x0)(xx0)2++n!f(n)(x0)(xx0)n+(n+1)!f(n+1)(ξ)(xx0)n+1(7)

拉格朗日型余项:

R n ( x ) = 1 ( n + 1 ) ! f ( n + 1 ) ( ξ ) ( x − x 0 ) n + 1 R_{n}(x) = \frac{1}{(n+1) !}f^{(n+1)}(\xi)\left(x-x_{0}\right)^{n+1} Rn(x)=(n+1)!1f(n+1)(ξ)(xx0)n+1


若在 [ a , b ] [a, b] [a,b] u ( x ) , v ( x ) u(x), v(x) u(x),v(</

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值