数学分析(十三)-函数列与函数项级数1-一致收敛性1-函数列2:一致收敛性【|fₙ(x)-f(x)|<ε,称{fₙ(x)}一致收敛于f】【几何:y=fₙ(x)落在以曲线y=f(x)±ε为边的带区域内】

本文通过例1和例2探讨了函数列的一致收敛性,证明了在不同情况下函数列的收敛域及极限函数。一致收敛性的关键在于,对于任意正数ε,存在N,当n>N时,所有函数列在定义域上都满足误差小于ε。函数列在某些区间内可能点wise收敛,但并不一致收敛,例如例2中的nsinnx在(-∞, +∞)上一致收敛于0。此外,一致收敛性对于研究极限函数的连续性、导数和积分等特性至关重要。" 126458259,15161133,JAVA社团管理系统毕业设计源码分享,"['JAVA开发', '数据库设计', '前端开发', '后端开发', 'B/S架构']
摘要由CSDN通过智能技术生成

例 1
f n ( x ) = x n , n = 1 , 2 , ⋯ f_{n}(x)=x^{n}, n=1,2, \cdots fn(x)=xn,n=1,2, 为定义在 ( − ∞ , + ∞ ) (-\infty,+\infty) (,+)上的函数列, 证明它的收敛域是 ( − 1 , 1 ] (-1,1] (1,1], 且有极限函数

f ( x ) = { 0 , ∣ x ∣ < 1 , 1 , x = 1. f(x)=\left\{\begin{array}{ll} 0, & |x|<1, \\ 1, & x=1 . \end{array}\right. f(x)={ 0,1,x<1,x=1.


任给 ε > 0 \varepsilon>0 ε>0 (不妨设 ε < 1 \varepsilon<1 ε<1 ), 当 0 < ∣ x ∣ < 1 0<|x|<1 0<x<1 时, 由于

∣ f n ( x ) − f ( x ) ∣ = ∣ x ∣ n , \left|f_{n}(x)-f(x)\right|=|x|^{n}, fn(x)f(x)=xn,

只要取 N ( ε , x ) = ln ⁡ ε ln ⁡ ∣ x ∣ N(\varepsilon, x)=\cfrac{\ln \varepsilon}{\ln |x|} N(ε,x)=lnxlnε, 当 n > N ( ε , x ) n>N(\varepsilon, x) n>N(ε,x) 时, 就有

∣ f n ( x ) − f ( x ) ∣ < ε . \left|f_{n}(x)-f(x)\right|<\varepsilon . fn(x)f(x)<ε.

x = 0 x=0 x=0 x = 1 x=1 x=1 时,则对任何正整数 n n n,都有

∣ f n ( 0 ) − f ( 0 ) ∣ = 0 < ε , ∣ f n ( 1 ) − f ( 1 ) ∣ = 0 < ε . \left|f_{n}(0)-f(0)\right|=0<\varepsilon, \quad\left|f_{n}(1)-f(1)\right|=0<\varepsilon . fn(0)f(0)=0<ε,fn(1)f(1)=0<ε.

这就证得 { f n } \left\{f_{n}\right\} { fn} ( − 1 , 1 ] (-1,1] (1,1] 上收敛, 且有 (3)式所表示的极限

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值