数学分析(十七)-多元函数微分学1-可微性4-可微性几何意义及应用4:二元函数全微分的几何意义【全微分dz的值是过点P的切平面上相应的增量】【(Δz-dz)的值随着ρ→0而趋于零】

本文介绍了多元函数微分学中曲面的切平面和法线的概念。定义3阐述了切平面的形成条件,定理17.4则讨论了函数在某点可微与存在切平面的关系。全微分dz的几何意义是过点P的切平面上相应增量,其与自变量增量的差Δz随着ρ→0趋于零。举例说明了如何求抛物面的切平面和法线方程。
摘要由CSDN通过智能技术生成

定义 3

P P P 是曲面 S S S 上一点, Π \Pi Π 为通过点 P P P 的一个平面, 曲面 S S S上的动点 Q Q Q 到定点 P P P 和到平面 Π \Pi Π 的距离分别为 d d d h h h (图17-3). 若当 Q Q Q S S S 上以任何方式趋近于 P P P 时, 恒有 h d → 0 \cfrac{h}{d} \rightarrow 0 dh0, 则称平面 Π \Pi Π 为曲面 S S S 在点 P P P处的切平面, P P P切点

定理 17.4

曲面 z = f ( x , y ) z=f(x, y) z=f(x,y) 在点 P ( x 0 , y 0 , f ( x 0 , y 0 ) ) P\left(x_{0}, y_{0}, f\left(x_{0}, y_{0}\right)\right) P(x0,y0,f(x0,y0)) 存在不平行于 z z z 轴的切平面 Π \Pi Π的充要条件是函数 f f f 在点 P 0 ( x 0 , y 0 ) P_{0}\left(x_{0}, y_{0}\right) P0(x0,y0) 可微.


定理 17.4 说明: 若函数 f f f 在点 P 0 ( x 0 , y 0 ) P_{0}\left(x_{0}, y_{0}\right) P0(x0,y0) 可微, 则曲面 z = f ( x , y ) z=f(x, y) z=f(x,y) 在点 P ( x 0 , y

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值