数学分析(二十二)-曲面积分2-第二型曲面积分4:两类曲面积分的联系

本文介绍了如何在光滑曲面上建立第一型和第二型曲面积分之间的联系。通过曲面的正侧和法线方向的余弦,证明了两类曲面积分在一定条件下可以相互转换,并给出了定理22.3和定理22.4来阐述这种关系。此外,还提供了一个例子说明如何利用这些关系计算特定曲面积分。
摘要由CSDN通过智能技术生成

与曲线积分一样, 当曲面的侧确定之后, 可以建立两种类型曲面积分的联系.

S S S 为光滑曲面, 并以上侧为正侧, R R R S S S 上的连续函数, 曲面积分在 S S S 的正侧进行. 因而有

∬ S R ( x , y , z ) d x   d y = lim ⁡ ∥ T ∥ → 0 ∑ i = 1 n R ( ξ i , η i , ζ i ) Δ S i , y . ( 9 ) \iint_{S} R(x, y, z) \mathrm{d} x \mathrm{~d} y=\lim \limits_{\|T\| \rightarrow 0} \sum_{i=1}^{n} R\left(\xi_{i}, \eta_{i}, \zeta_{i}\right) \Delta S_{i, y} . \quad\quad(9) SR(x,y,z)dx dy=T0limi=1nR(ξi,ηi,ζi)ΔSi,y.(9)

由曲面面积公式 (第二十一章 § 6 § 6 §6 )

Δ S i = ∬ S i x 1 cos ⁡ γ d x   d y , \Delta S_{i}=\iint_{S_{i x}} \cfrac{1}{\cos \gamma} \mathrm{d} x \mathrm{~d} y, ΔSi=Sixcosγ1dx dy,

其中 γ \gamma γ 是曲面 S i S_{i} Si 的法线方向与 z z z 轴正向的交角, 它是定义在 S i s S_{i_{s}} Sis 上的函数. 因为积分沿曲面正侧进行, 所以 γ \gamma γ 是锐角. 又由 S S S 是光滑的, 所以 cos ⁡ γ \cos \gamma cosγ 在闭区域 S i x S_{i_{x}} Six 上连续.应用中值定理,在 S i y S_{i_{y}} Siy 内必存在一点,使这点的法线方向与 z z z轴正向的夹角 γ i ∗ \gamma_{i}^{*} γi 满足等式

Δ S i = 1 cos ⁡ γ i ∗ Δ S i , \Delta S_{i}=\cfrac{1}{\cos \gamma_{i}^{*}} \Delta S_{i,} ΔSi=cosγi1ΔSi,

Δ S i , y = cos ⁡ γ i ∗ ⋅ Δ S i \Delta S_{i, y}=\cos \gamma_{i}^{*} \cdot \Delta S_{i} ΔSi,y=cosγiΔSi

于是

R ( ξ i , η i , ζ i ) Δ S i y y = R ( ξ i , η i , ζ i ) cos ⁡ γ i ∗ Δ S i R\left(\xi_{i}, \eta_{i}, \zeta_{i}\right) \Delta S_{i_{y y}}=R\left(\xi_{i}, \eta_{i}, \zeta_{i}\right) \cos \gamma_{i}^{*} \Delta S_{i} R(ξi,ηi,ζi)ΔSiyy=R(ξi,ηi,ζi)cosγiΔSi

n n

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值