复变函数论1-1-复数3-3-1-复数的表示形式2:三角形式【z=r(cosθ+isinθ)】【单位复数:z=cosθ+isinθ,其中r=1】【欧拉公式:eⁱᶿ=cosθ+isinθ】

本文介绍了复数的表示形式,包括代数形式、三角形式和指数形式,并通过欧拉公式阐述了它们之间的转换。通过具体例子展示了如何将复数化为指数形式,强调了在不同情况下选择合适表示法的重要性。
摘要由CSDN通过智能技术生成

从直角坐标与极坐标的关系, 我们可以用复数的模 r r r 与辐角 θ \theta θ 来表示非零复数 z z z,即(由图 1.1)

z = r ( cos ⁡ θ + i sin ⁡ θ ) . z=r(\cos \theta+\mathrm{i} \sin \theta) . z=r(cosθ+isinθ).

特别, 当 r = 1 r=1 r=1 时有

z = cos ⁡ θ + i sin ⁡ θ \color{red}{z=\cos \theta+\mathrm{i} \sin \theta} z=cosθ+isinθ

这种复数称为单位复数.

我们有如下的欧拉公式:

e i θ = cos ⁡ θ + i sin ⁡ θ \color{red}{\mathrm{e}^{\mathrm{i} \theta}=\cos \theta+\mathrm{i} \sin \theta} eiθ=cosθ+isinθ

容易验证

e i θ 1 e i θ 2 = e i ( θ 1 + θ 2 ) e i θ 1 e i θ 2 = e i ( θ 1 − θ 2 ) } \left.\begin{array}{l} \mathrm{e}^{i \theta_{1}} \mathrm{e}^{i \theta_{2}}=\mathrm{e}^{\mathrm{i}\left(\theta_{1}+\theta_{2}\right)} \\ \cfrac{\mathrm{e}^{i\theta_{1}}}{\mathrm{e}^{i\theta_{2}}}=\mathrm{e}^{\mathrm{i}\left(\theta_{1}-\theta_{2}\right)} \end{array}\right\} eiθ1eiθ2=ei(θ1+θ2)eiθ2eiθ1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值