复变函数论6-留数理论及其应用2-1-用留数定理计算实积分3:∫[P(x)/Q(x)]eⁱᵐˣdx型积分

某些实的定积分可应用留数定理进行计算, 尤其是对原函数不易直接求得的定积分和反常积分, 这常是一个有效的方法, 其要点是将它化归为复变函数的周线积分.

三、计算 ∫ − ∞ + ∞ P ( x ) Q ( x ) e i m x   d x \int_{-\infty}^{+\infty} \frac{P(x)}{Q(x)} \mathrm{e}^{\mathrm{i} m x} \mathrm{~d} x +Q(x)P(x)eimx dx型积分

引理 6.2 (若尔当引理)

设函数 g ( z ) g(z) g(z) 沿半圆周 Γ R : z = R e i θ ( 0 ⩽ θ ⩽ π , R \Gamma_{R}: z=R \mathrm{e}^{i \theta}(0 \leqslant \theta \leqslant \pi, R ΓR:z=Reiθ(0θπ,R充分大)上连续,且

lim ⁡ R → + ∞ g ( z ) = 0 \lim \limits_{R \rightarrow+\infty} g(z)=0 R+limg(z)=0

Γ R \Gamma_{R} ΓR 上一致成立.则

lim ⁡ R → + ∞ ∫ Γ R g ( z ) e i m z d z = 0 ( m > 0 ) . \lim \limits_{R \rightarrow+\infty} \int_{\Gamma_{R}} g(z) \mathrm{e}^{\mathrm{imz}} \mathrm{d} z=0 \quad(m>0) . R+limΓRg(z)eimzdz=0(m>0).

证 对于任给的 ε > 0 \varepsilon>0 ε>0, 存在 R 0 ( ε ) > 0 R_{0}(\varepsilon)>0 R0(ε)>0, 使当 R > R 0 R>R_{0} R>R0 时, 有

∣ g ( z ) ∣ < ε , z ∈ Γ R . |g(z)|<\varepsilon, \quad z \in \Gamma_{R} . g(z)<ε,zΓR.

于是, 就有

∣ ∫ Γ R g ( z ) e i m z   d z ∣ = ∣ ∫ 0 π g ( R e i θ ) e i m R e † R e i θ i θ ∣ ⩽ R ε ∫ 0 π e − m R sin ⁡ θ d θ , \begin{aligned} \left|\int_{\Gamma_{R}} g(z) \mathrm{e}^{\mathrm{im} z} \mathrm{~d} z\right| & =\left|\int_{0}^{\pi} g\left(R \mathrm{e}^{\mathrm{i} \theta}\right) \mathrm{e}^{\mathrm{i} m R \mathrm{e}^{\dagger}} R \mathrm{e}^{\mathrm{i} \theta} \mathrm{i} \theta\right| \\ & \leqslant R \varepsilon \int_{0}^{\pi} \mathrm{e}^{-m R \sin \theta} \mathrm{d} \theta, \end{aligned} ΓRg(z)eimz dz = 0πg(Reiθ)eimReReiθiθ 0πemRsinθdθ,

这里利用了 ∣ g ( R e i θ ) ∣ < ε , ∣ R e i θ i ∣ = R \left|g\left(R \mathrm{e}^{i \theta}\right)\right|<\varepsilon,\left|R \mathrm{e}^{i \theta} \mathrm{i}\right|=R

  • 17
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值