泛函分析基础9-3-希尔伯特空间1-3:定义2【n项部分和】

仿照欧氏空间中正交坐标系的概念,我们在内积空间中引入正交系的概念.


我们在内积空间中引入规范正交系的目的是要把空间中的向量关于规范正交系展开成级数,为此,首先介绍一般赋范线性空间中级数收敛的概念.

定义2

X X X 是赋范线性空间, x i , i = 1 , 2 , ⋯ x _ { i } , i = 1 , 2 , \cdots xi,i=1,2, X X X中一列向量, α 1 , α 2 , ⋯ \alpha _ { 1 } , \alpha _ { 2 } , \cdots α1,α2, 是一列数,作形式级数

∑ i = 1 ∞ α i x i , ( 3 ) \sum _ { i = 1 } ^ { \infty } \alpha _ { i } x _ { i } ,\quad\quad(3) i=1αixi,(3)

S n = ∑ i = 1 n α i x i S _ { n } = \sum _ { i = 1 } ^ { n } \alpha _ { i } x _ { i } Sn=i=1nαixi 为级数(3)的 n n n 项部分和,若存在 x ∈ X , x \in X , xX, 使 S n → x ( n → ∞ ) , S _ { n } \rightarrow x ( n \rightarrow \infty ) , Snx(n), 则称级数(3)收敛,并称 x x x 为这个级数的和,记为 x = ∑ i = 1 ∞ α i x i . x = \sum _ { i = 1 } ^ { \infty } \alpha _ { i } x _ { i } . x=i=1αixi.

M M M X X X 中规范正交系, e 1 , e 2 , ⋯ e _ { 1 } , e _ { 2 } , \cdots e1,e2, M M M中有限或可列个向量,且 x = ∑ i = 1 ∞ α i e i , x = \sum _ { i = 1 } ^ { \infty } \alpha _ { i } e _ { i } , x=i=1αiei, 则对每个正整数 j , j , j, 由内积连续性,可以得到

⟨ x , e j ⟩ = ⟨ ∑ i = 1 ∞ α i e i , e j ⟩ = ∑ i = 1 ∞ α i ( e i , e j ⟩ = α j , \left\langle x , e _ { j } \right\rangle = \left\langle \sum _ { i = 1 } ^ { \infty } \alpha _ { i } e _ { i } , e _ { j } \right\rangle = \sum _ { i = 1 } ^ { \infty } \alpha _ { i } \left( e _ { i } , e _ { j } \right\rangle = \alpha _ { j } , x,ej=i=1αiei,ej=i=1αi(ei,ej=αj,

所以 x = ∑ j = 1 ∞ ⟨ x , e j ⟩ e f . x = \sum _ { j = 1 } ^ { \infty } \left\langle x , e _ { j } \right\rangle e _ { f } . x=j=1x,ejef.

定义3

M M M 为内积空间 X X X 中的规范正交系 x ∈ X , x \in X , xX, 称数集

{ ⟨ x , e ⟩ : e ∈ M } \{ \langle x , e \rangle : e \in M \} {⟨x,e:eM}

为向量 x x x 关于规范正交系 M M M 的傅里叶系数集,而称 ⟨ x , e ⟩ \langle x , e \rangle x,e x x x 关于 e e e 的傅里叶系数

例3
X = L 2 [ 0 , 2 π ] , M X = L ^ { 2 } [ 0 , 2 \pi ] , M X=L2[0,2π],M 为例2中三角函数系,记 e 0 ( x ) = 1 2 , e 1 ( x ) = cos ⁡ x , e 2 ( x ) e _ { 0 } ( x ) = \frac { 1 } { \sqrt { 2 } } , e _ { 1 } ( x ) = \cos x , e _ { 2 } ( x ) e0(x)=2 1,e1(x)=cosx,e2(x)
= sin ⁡ x , ⋯   , e 2 n − 1 ( x ) = cos ⁡ n x , e 2 n ( x ) = sin ⁡ n x , ⋯   , = \sin x , \cdots , e _ { 2 n - 1 } ( x ) = \cos n x , e _ { 2 n } ( x ) = \sin n x , \cdots , =sinx,,e2n1(x)=cosnx,e2n(x)=sinnx,,对于任何 f ∈ L 2 [ 0 , 2 π ] , f f \in L ^ { 2 } [ 0 , 2 \pi ] , f fL2[0,2π],f 关于 M M M 的傅里叶系数集即为

a 0 = 1 2 π ∫ 0 2 π f ( t ) d t = ⟨ f , e 0 ⟩ , a n = 1 π ∫ 0 2 π f ( t ) cos ⁡ n t   d t = ⟨ f , e 2 n − 1 ⟩ , n = 1 , 2 , ⋯   , b n = 1 π ∫ 0 2 π f ( t ) sin ⁡ n t   d t = ⟨ f , e 2 n ⟩ , n = 1 , 2 , ⋯   . \begin{aligned} a _ { 0 } = \frac { 1 } { \sqrt { 2 } \pi } \int _ { 0 } ^ { 2 \pi } f ( t ) \mathrm { d } t = \left\langle f , e _ { 0 } \right\rangle , \\ a _ { n } = \frac { 1 } { \pi } \int _ { 0 } ^ { 2 \pi } f ( t ) \cos n t \mathrm { ~ d } t = \left\langle f , e _ { 2 n - 1 } \right\rangle , n = 1 , 2 , \cdots , \\ b _ { n } = \frac { 1 } { \pi } \int _ { 0 } ^ { 2 \pi } f ( t ) \sin n t \mathrm { ~ d } t = \left\langle f , e _ { 2 n } \right\rangle , n = 1 , 2 , \cdots . \end{aligned} a0=2 π102πf(t)dt=f,e0,an=π102πf(t)cosnt dt=f,e2n1,n=1,2,,bn=π102πf(t)sinnt dt=f,e2n,n=1,2,.

所以内积空间 X X X 中向量 x x x 关于规范正交系 M M M的傅里叶系数实际上是数学分析中傅里叶系数概念的推广,

下面讨论傅里叶系数的性质.

引理1

X X X 是 内积空间, M M M X X X 中 规范正交系,任取 M M M 中有限个向量 e 1 , e 2 , ⋯   , e _ { 1 } , e _ { 2 } , \cdots , e1,e2,, e n , e _ { n } , en, 那么有

(1) ∥ x − ∑ i = 1 n ⟨ x , e i ⟩ e i ∥ 2 = ∥ x ∥ 2 − ∑ i = 1 n ∣ ⟨ x , e i ⟩ ∣ 2 ⩾ 0 ; \left\| x - \sum _ { i = 1 } ^ { n } \left\langle x , e _ { i } \right\rangle e _ { i } \right\| ^ { 2 } = \| x \| ^ { 2 } - \sum _ { i = 1 } ^ { n } \left| \left\langle x , e _ { i } \right\rangle \right| ^ { 2 } \geqslant 0 ; xi=1nx,eiei 2=x2i=1nx,ei20;
(2) ∥ x − ∑ i = 1 n α i e i ∥ ⩾ ∥ x − ∑ i = 1 n ⟨ x , e i ⟩ e i ∥ , 其中 α 1 , α 2 , ⋯   , α n 为任意 n 个数 \left\| x - \sum _ { i = 1 } ^ { n } \alpha _ { i } e _ { i } \right\| \geqslant \left\| x - \sum _ { i = 1 } ^ { n } \left\langle x , e _ { i } \right\rangle e _ { i } \right\| ,其中 \alpha _ { 1 } , \alpha _ { 2 } , \cdots , \alpha _ { n } 为任意n 个数 xi=1nαiei xi=1nx,eiei ,其中α1,α2,,αn为任意n个数

证明
因对任意 n n n 个数 α 1 , α 2 , ⋯   , α n , \alpha _ { 1 } , \alpha _ { 2 } , \cdots , \alpha _ { n } , α1,α2,,αn,

∥ x − ∑ i = 1 n α i e i ∥ 2 = ⟨ x − ∑ i = 1 n α i e i , x − ∑ i = 1 n α i e i ⟩ = ⟨ x , x ⟩ − ⟨ ∑ i = 1 n α i e i , x ⟩ − ⟨ x , ∑ i = 1 n α i e i ⟩ + ⟨ ∑ i = 1 n α i e i , ∑ i = 1 n α i e i ⟩ = ∥ x ∥ 2 − 2 Re ⁡ ∑ i = 1 n α ˉ i ⟨ x , e i ⟩ + ∑ i = 1 n ∣ α i ∣ 2 . \begin{aligned} \left\| x - \sum _ { i = 1 } ^ { n } \alpha _ { i } e _ { i } \right\| ^ { 2 } = \left\langle x - \sum _ { i = 1 } ^ { n } \alpha _ { i } e _ { i } , x - \sum _ { i = 1 } ^ { n } \alpha _ { i } e _ { i } \right\rangle \\ = \langle x , x \rangle - \left\langle \sum _ { i = 1 } ^ { n } \alpha _ { i } e _ { i } , x \right\rangle - \left\langle x , \sum _ { i = 1 } ^ { n } \alpha _ { i } e _ { i } \right\rangle + \left\langle \sum _ { i = 1 } ^ { n } \alpha _ { i } e _ { i } , \sum _ { i = 1 } ^ { n } \alpha _ { i } e _ { i } \right\rangle \\ = \| x \| ^ { 2 } - 2 \operatorname { R e } \sum _ { i = 1 } ^ { n } \bar { \alpha } _ { i } \left\langle x , e _ { i } \right\rangle + \sum _ { i = 1 } ^ { n } \left| \alpha _ { i } \right| ^ { 2 } . \end{aligned} xi=1nαiei 2=xi=1nαiei,xi=1nαiei=x,xi=1nαiei,xx,i=1nαiei+i=1nαiei,i=1nαiei=x22Rei=1nαˉix,ei+i=1nαi2.

α i = ⟨ x , e i ⟩ , i = 1 , 2 , ⋯   , n , \alpha _ { i } = \left\langle x , e _ { i } \right\rangle , i = 1 , 2 , \cdots , n , αi=x,ei,i=1,2,,n,代入上式即得(1).另一方面,由上式及结论(1),我们又有

∥ x − ∑ i = 1 n α i e i ∥ 2 − ∥ x − ∑ i = 1 n ⟨ x , e i ⟩ e i ∥ 2 = ∑ i = 1 n ∣ α i − ⟨ x , e i ⟩ ∣ 2 ⩾ 0. \left\| x - \sum _ { i = 1 } ^ { n } \alpha _ { i } e _ { i } \right\| ^ { 2 } - \left\| x - \sum _ { i = 1 } ^ { n } \left\langle x , e _ { i } \right\rangle e _ { i } \right\| ^ { 2 } = \sum _ { i = 1 } ^ { n } \left| \alpha _ { i } - \left\langle x , e _ { i } \right\rangle \right| ^ { 2 } \geqslant 0 . xi=1nαiei 2 xi=1nx,eiei 2=i=1nαix,ei20.

由此知(2)成立.

从引理1中(2)的证明中可以看出,在(2)中仅当 α i = ⟨ x , e i ⟩ , i = 1 , 2 , ⋯   , n \alpha _ { i } = \left\langle x , e _ { i } \right\rangle , i = 1 , 2 , \cdots , n αi=x,ei,i=1,2,,n时,等号才成立.其次还可以看出,若用 e 1 , e 2 , ⋯   , e n e _ { 1 } , e _ { 2 } , \cdots , e _ { n } e1,e2,,en 的线性组合逼近 x , x , x, 则取 α i = ⟨ x , e i ⟩ , i = 1 , \alpha _ { i } = \left\langle x , e _ { i } \right\rangle , i = 1 , αi=x,ei,i=1, 2 , ⋯   , n 2 , \cdots , n 2,,n 时的逼近为最佳。

定理1(贝塞尔( Bessel)不等式)

{ e k } \left\{ e _ { k } \right\} {ek} 是内积空间 X X X 中的有限或可数规范正交系,那么对每个 x ∈ X , x \in X , xX, 成立不等式

∑ i = 1 ∞ ∣ ⟨ x , e i ⟩ ∣ 2 ⩽ ∥ x ∥ 2 . ( 4 ) \sum _ { i = 1 } ^ { \infty } \left| \left\langle x , e _ { i } \right\rangle \right| ^ { 2 } \leqslant \| x \| ^ { 2 } .\quad\quad(4) i=1x,ei2x2.(4)

证明
如果 { e k } \left\{ e _ { k } \right\} {ek}中只有有限个向量,则结论由引理1的(1)立即可得.当 { e k } \left\{ e _ { k } \right\} {ek} 可数时,只要在引理1的(1)中令 n → ∞ , n \rightarrow \infty , n, 即得(4)式.

如果贝塞尔不等式中等号成立,则称此等式为帕塞瓦尔( Parseval)等式

引理2

∣ e k } \left| e _ { k } \right\} ek} 为 希尔伯特空间 X X X中可数规范正交系,那么

(1)级数 ∑ i = 1 ∞ α i e i \sum _ { i = 1 } ^ { \infty } \alpha _ { i } e _ { i } i=1αiei收敛的充要条件为级数 ∑ i = 1 ∞ ∣ α i ∣ 2 \sum _ { i = 1 } ^ { \infty } \left| \alpha _ { i } \right| ^ { 2 } i=1αi2收敛;
(2)若 x = ∑ i = 1 ∞ α i e i , x = \sum _ { i = 1 } ^ { \infty } \alpha _ { i } e _ { i } , x=i=1αiei, α i = ⟨ x , e i ⟩ , i = 1 , 2 , ⋯   , \alpha _ { i } = \left\langle x , e _ { i } \right\rangle , i = 1 , 2 , \cdots , αi=x,ei,i=1,2,, x = ∑ i = 1 ∞ ⟨ x , e i ⟩ e i ; x = \sum _ { i = 1 } ^ { \infty } \left\langle x , e _ { i } \right\rangle e _ { i } ; x=i=1x,eiei;
(3)对任何 x ∈ X , x \in X , xX, 级数 ∑ i = 1 ∞ ⟨ x , e i ⟩ e i \sum _ { i = 1 } ^ { \infty } \left\langle x , e _ { i } \right\rangle e _ { i } i=1x,eiei收敛.

证明
(1)设 S n = ∑ i = 1 n α i e i , σ n = ∑ i = 1 n ∣ α i ∣ 2 , S _ { n } = \sum _ { i = 1 } ^ { n } \alpha _ { i } e _ { i } , \sigma _ { n } = \sum _ { i = 1 } ^ { n } \left| \alpha _ { i } \right| ^ { 2 } , Sn=i=1nαiei,σn=i=1nαi2,
由于 { e i } \left\{ e _ { i } \right\} {ei} 为规范正交系,所以对任何正整数 m m m n , n > m , n , n > m , n,n>m,

∥ S n − S m ∥ 2 = ∥ α m + 1 e m + 1 + α m + 2 e m + 2 + ⋯ + α n e n ∥ 2 = ∑ i = m + 1 n ∣ α i ∣ 2 = σ n − σ m , \left\| S _ { n } - S _ { m } \right\| ^ { 2 } = \left\| \alpha _ { m + 1 } e _ { m + 1 } + \alpha _ { m + 2 } e _ { m + 2 } + \cdots + \alpha _ { n } e _ { n } \right\| ^ { 2 } = \sum _ { i = m + 1 } ^ { n } \left| \alpha _ { i } \right| ^ { 2 } = \sigma _ { n } - \sigma _ { m } , SnSm2=αm+1em+1+αm+2em+2++αnen2=i=m+1nαi2=σnσm,

所以 ∣ S n } \left| S _ { n } \right\} Sn} X X X 中柯西点列的充要条件为 { σ n } \left\{ \sigma _ { n } \right\} {σn} 是柯西数列,由 X X X 和数域的完备性知,(1)成立.

(2)前已证过;
(3)由贝塞尔不等式知, ∑ i = 1 ∞ ∣ ⟨ x , e i ⟩ ∣ 2 \sum _ { i = 1 } ^ { \infty } \left| \left\langle x , e _ { i } \right\rangle \right| ^ { 2 } i=1x,ei2收敛,由(1)及(2),知 ∑ i = 1 ∞ ⟨ x , e i ⟩ e i \sum _ { i = 1 } ^ { \infty } \left\langle x , e _ { i } \right\rangle e _ { i } i=1x,eiei收敛.

推论1

{ e i } \left\{ e _ { i } \right\} {ei} X X X 中 可数规范正交系,则对任何 x ∈ X , x \in X , xX,

lim ⁡ n → ∞ ⟨ x , e n ⟩ = 0. ( 5 ) \lim _ { n \rightarrow \infty } \left\langle x , e _ { n } \right\rangle = 0 .\quad\quad(5) nlimx,en=0.(5)

证明
由定理1,对任何 x ∈ X , ∑ i = 1 ∞ ∣ ⟨ x , e i ⟩ ∣ 2 ⩽ ∥ x ∥ 2 x \in X , \sum _ { i = 1 } ^ { \infty } \left| \left\langle x , e _ { i } \right\rangle \right| ^ { 2 } \leqslant \| x \| ^ { 2 } xX,i=1x,ei2x2收敛,所以一般项 ⟨ x , e n ⟩ \left\langle x , e _ { n } \right\rangle x,en → 0 ( n → ∞ ) . \rightarrow 0 ( n \rightarrow \infty ) . 0(n).

X X X L 2 [ 0 , 2 π ] , M L ^ { 2 } [ 0 , 2 \pi ] , M L2[0,2π],M为三角函数系时,推论1即为黎曼-勒贝格引理.下面讨论一般规范正交系的贝塞尔不等式设 { e k , k ∈ A } \left\{ e _ { k } , k \in A \right\} {ek,kA} X X X 中规范正交系,其中 Λ \Lambda Λ 为 一指标集,那么对任一 x ∈ X , A x \in X , A xX,A 中使 ⟨ x , e k ⟩ ≠ 0 \left\langle x , e _ { k } \right\rangle \neq 0 x,ek=0 的指标 k k k至多只有可数个.事实上,由贝塞尔不等式,易知对任何正整数 m , m , m, 使 ∣ ⟨ x , e k ⟩ ∣ > 1 m \left| \left\langle x , e _ { k } \right\rangle \right| > \frac { 1 } { m } x,ek>m1的 指标 k k k 至多只有有限个,所以集

{ e k : ⟨ x , e k ⟩ ≠ 0 } = ⋃ m = 1 ∞ { e k : ∣ ⟨ x , e k ⟩ ∣ > 1 m } \left\{ e _ { k } : \left\langle x , e _ { k } \right\rangle \neq 0 \right\} = \bigcup _ { m = 1 } ^ { \infty } \left\{ e _ { k } : \left| \left\langle x , e _ { k } \right\rangle \right| > \frac { 1 } { m } \right\} {ek:x,ek=0}=m=1{ek:x,ek>m1}

至多为可数集.由此可以形式地作级数

∑ k ∈ A ⟨ x , e k ⟩ e k , ( 6 ) \sum _ { k \in A } \left\langle x , e _ { k } \right\rangle e _ { k } ,\quad\quad(6) kAx,ekek,(6)

其中和式理解成对所有使 ⟨ x , e k ⟩ ≠ 0 \left\langle x , e _ { k } \right\rangle \neq 0 x,ek=0的指标 k k k 相加.因此贝塞尔不等式可以写成

∑ k ∈ A ∣ ⟨ x , e k ⟩ ∣ 2 ⩽ ∥ x ∥ 2 . ( 7 ) \sum _ { k \in A } \left| \left\langle x , e _ { k } \right\rangle \right| ^ { 2 } \leqslant \| x \| ^ { 2 } .\quad\quad(7) kAx,ek2x2.(7)

我们的兴趣在于什么时候向量 x x x可以写成由傅里叶系数所作级数(6)的和,为此,首先引入完全规范正交系的概念

定义4

M M M 是内积空间 X X X 中 的规范正交系,如果

spanM ⁡ = X , ( 8 ) \operatorname { s p a n M } = X ,\quad\quad(8) spanM=X,(8)

则称 M M M X X X 中 的完全规范正交系

利用本章 S \mathrm { S } S 2引理3,立即可以得到下列定理

定理2

M M M 是希尔伯特空间 X X X 中规范正交系,那么 M M M 完全的充要条件为 M ⊥ = M ^ { \perp } = M= { 0 } . \{ 0 \} . {0}.

这个定理告诉我们,在完全规范正交系中不能再加进新的向量,使之成为更大的规范正交系.我们也可以用帕塞瓦尔等式来检验规范正交系的完全性。

定理3

M M M 是希尔伯特空间中完全规范正交系的充要条件为对所有 x ∈ X , x \in X , xX,成立帕塞瓦尔等式,

证明
充分性
设帕塞瓦尔等式对所有 x ∈ X x \in X xX 成立,若 M M M不完全,由定理2,存在 x 0 ≠ 0 , x 0 ⊥ M . x _ { 0 } \neq 0 , x _ { 0 } \perp M . x0=0,x0M. 所以对任何 e ∈ M , e \in M , eM, ⟨ x 0 , e ⟩ = 0 , \left\langle x _ { 0 } , e \right\rangle = 0 , x0,e=0, 由于对该 x 0 x _ { 0 } x0成立帕塞瓦尔等式

∥ x 0 ∥ 2 = ∑ z ∈ M ∣ ⟨ x 0 , e ⟩ ∣ 2 , \left\| x _ { 0 } \right\| ^ { 2 } = \sum _ { z \in M } \left| \left\langle x _ { 0 } , e \right\rangle \right| ^ { 2 } , x02=zMx0,e2,

所以 ∥ x 0 ∥ = 0 , \left\| x _ { 0 } \right\| = 0 , x0=0, x 0 = 0 , x _ { 0 } = 0 , x0=0, 这与 x 0 ≠ 0 x _ { 0 } \neq 0 x0=0 矛盾.

必要性
M M M X X X 中完全规范正交系,对任何 x ∈ X , x \in X , xX,设其非零傅里叶系数为 ⟨ x , e 1 ⟩ , ⟨ x , e 2 ⟩ , ⋯   , \left\langle x , e _ { 1 } \right\rangle , \left\langle x , e _ { 2 } \right\rangle , \cdots , x,e1,x,e2,,由引理2,级数 ∑ i = 1 ∞ ⟨ x , e i ⟩ e i \sum _ { i = 1 } ^ { \infty } \left\langle x , e _ { i } \right\rangle e _ { i } i=1x,eiei收 敛,设其和为 y , y , y, 则对任何正整数 i , i , i,

⟨ x − y , e i ⟩ = ⟨ x , e i ⟩ − ∑ j = 1 ∞ ⟨ x , e j ⟩ ⟨ e j , e i ⟩ = ⟨ x , e i ⟩ − ⟨ x , e i ⟩ = 0. \left\langle x - y , e _ { i } \right\rangle = \left\langle x , e _ { i } \right\rangle - \sum _ { j = 1 } ^ { \infty } \left\langle x , e _ { j } \right\rangle \left\langle e _ { j } , e _ { i } \right\rangle = \left\langle x , e _ { i } \right\rangle - \left\langle x , e _ { i } \right\rangle = 0 . xy,ei=x,eij=1x,ejej,ei=x,eix,ei=0.

又对 M M M 中一切使 ⟨ x , e ⟩ = 0 \langle x , e \rangle = 0 x,e=0 的向量 e , e , e,

⟨ x − y , e ⟩ = ⟨ x , e ⟩ − ∑ j = 1 ∞ ⟨ x , e j ⟩ ⟨ e j , e ⟩ = 0. \langle x - y , e \rangle = \langle x , e \rangle - \sum _ { j = 1 } ^ { \infty } \left\langle x , e _ { j } \right\rangle \left\langle e _ { j } , e \right\rangle = 0 . xy,e=x,ej=1x,ejej,e=0.

因此, x − y ⊥ M . x - y \perp M . xyM. M M M 的完全性,得到 x − y = 0 , x - y = 0 , xy=0, x = y . x = y . x=y. 所以 x = ∑ j = 1 ∞ ⟨ x , e j ⟩ e f . x = \sum _ { j = 1 } ^ { \infty } \left\langle x , e _ { j } \right\rangle e _ { f } . x=j=1x,ejef.由此得到

∥ x ∥ 2 = ∑ j = 1 ∞ ∣ ⟨ x , e j ⟩ ∣ 2 = ∑ e ∈ M ∣ ⟨ x , e ⟩ ∣ 2 , \| x \| ^ { 2 } = \sum _ { j = 1 } ^ { \infty } \left| \left\langle x , e _ { j } \right\rangle \right| ^ { 2 } = \sum _ { e \in M } | \langle x , e \rangle | ^ { 2 } , x2=j=1x,ej2=eMx,e2,

即帕塞瓦尔等式成立。

由定理3的证明可以看出,当 M M M 是希尔伯特空间 X X X 中 完全规范正交系时, X X X 中每个向量 x x x 都可以展开成级数

x = ∑ e ∈ M ⟨ x , e ⟩ e , ( 9 ) x = \sum _ { e \in M } \langle x , e \rangle e ,\quad\quad(9) x=eMx,ee,(9)

(9)式称为向量 x x x 关于规范正交系 M M M 的 傅里叶展开式

推论2(斯捷克洛夫(C TeKIOB )定理)

M M M 是希尔伯特空间 X X X 中规范正交系,若帕塞瓦尔等式在 X X X 的 某个稠密子集 A A A 上 成立,则 M M M 完全.

证明
E = span ⁡ M , E = \operatorname { s p a n } M , E=spanM, E E E X X X 中闭线性子空间,因在 A A A 上帕塞瓦尔等式成立,由定理3,易知对 A A A 中每个向量 x , x , x, 都成立

x = ∑ r ∈ M ⟨ x , e ⟩ e , x = \sum _ { r \in M } \langle x , e \rangle e , x=rMx,ee,

所以 x ∈ E , x \in E , xE, 因而 A ⊂ E , A \subset E , AE, 由于 E E E 是闭线性子空间,故有 A ˉ ⊂ E , \bar { A } \subset E , AˉE, 但因 A ˉ = X , \bar { A } = X , Aˉ=X, 所以 E = X , E = X , E=X, M M M X X X 中完全规范正交系.

利用推论2不难证明例2中三角函数系是 L 2 [ 0 , 2 π ] L ^ { 2 } [ 0 , 2 \pi ] L2[0,2π]中完全规范正交系,所以对任何 f ∈ L 2 [ 0 , 2 π ] , f ( x ) f \in L ^ { 2 } [ 0 , 2 \pi ] , f ( x ) fL2[0,2π],f(x) 都可展开成傅里叶级数

f ( x ) = a 0 + ∑ k = 1 ∞ ( a k cos ⁡ k x + b k sin ⁡ k x ) , f ( x ) = a _ { 0 } + \sum _ { k = 1 } ^ { \infty } \left( a _ { k } \cos k x + b _ { k } \sin k x \right) , f(x)=a0+k=1(akcoskx+bksinkx),

其中等号右端级数是指在 L 2 [ 0 , 2 π ] L ^ { 2 } [ 0 , 2 \pi ] L2[0,2π] 中平方平均收敛, a 0 , a k , b k a _ { 0 } , a _ { k } , b _ { k } a0,ak,bk 分别为例3中 f f f 关于三角函数系的傅里叶系数.

由上所述,可见完全规范正交系是研究希尔伯特空间的重要工具,那么是否每个非零希尔伯特空间都有完全规范正交系,以及如何去得到完全规范正交系?为此首先介绍一般的格拉姆-施密特(Gram- Schmidt)正交化过程.

引理3

{ x 1 , x 2 , ⋯   } \left\{ x _ { 1 } , x _ { 2 } , \cdots \right\} {x1,x2,} 是内积空间 X X X中有限或可数个线性无关向量,那么必有 X X X中规范正交系 ∣ e 1 , e 2 ⋯   } , \left| e _ { 1 } , e _ { 2 } \cdots \right\} , e1,e2}, 使对任何正整数 n , n , n,

span ⁡ { e 1 , e 2 , ⋯   , e n } = span ⁡ { x 1 , x 2 , ⋯   , x n } . \operatorname { s p a n } \left\{ e _ { 1 } , e _ { 2 } , \cdots , e _ { n } \right\} = \operatorname { s p a n } \left\{ x _ { 1 } , x _ { 2 } , \cdots , x _ { n } \right\} . span{e1,e2,,en}=span{x1,x2,,xn}.

证明
e 1 = x 1 ∥ x 1 ∥ , e _ { 1 } = \frac { x _ { 1 } } { \left\| x _ { 1 } \right\| } , e1=x1x1, ∥ e 1 ∥ = 1 , \left\| e _ { 1 } \right\| = 1 , e1=1, span ⁡ { e 1 } = span ⁡ { x 1 } , \operatorname { s p a n } \left\{ e _ { 1 } \right\} = \operatorname { s p a n } \left\{ x _ { 1 } \right\} , span{e1}=span{x1}, v 2 = x 2 − ⟨ x 2 , e 1 ⟩ e 1 , v _ { 2 } = x _ { 2 } - \left\langle x _ { 2 } , e _ { 1 } \right\rangle e _ { 1 } , v2=x2x2,e1e1,因为 x 1 , x 2 x _ { 1 } , x _ { 2 } x1,x2 线性无关,所以 v 2 ≠ 0 , v _ { 2 } \neq 0 , v2=0, v 2 ⊥ e 1 . v _ { 2 } \perp e _ { 1 } . v2e1. e 2 = v 2 ∥ v 2 ∥ , e _ { 2 } = \frac { v _ { 2 } } { \left\| v _ { 2 } \right\| } , e2=v2v2, ∥ e 2 ∥ = 1 , \left\| e _ { 2 } \right\| = 1 , e2=1, e 2 ⊥ e 1 . e _ { 2 } \perp e _ { 1 } . e2e1. 显然 span ⁡ { e 1 , e 2 } = span ⁡ { x 1 , x 2 } . \operatorname { s p a n } \left\{ e _ { 1 } , e _ { 2 } \right\} = \operatorname { s p a n } \left\{ x _ { 1 } , x _ { 2 } \right\} . span{e1,e2}=span{x1,x2}.如果已作了 e 1 , e 2 , ⋯   , e n − 1 , e _ { 1 } , e _ { 2 } , \cdots , e _ { n - 1 } , e1,e2,,en1, 其中 ∥ e i ∥ = 1 , i = 1 , 2 , ⋯   , n − 1 , \left\| e _ { i } \right\| = 1 , i = 1 , 2 , \cdots , n - 1 , ei=1,i=1,2,,n1,并且两两正交,满足 span ⁡ { e 1 , e 2 , ⋯   , e n − 1 } = span ⁡ { x 1 , x 2 , ⋯   , x n − 1 } , \operatorname { s p a n } \left\{ e _ { 1 } , e _ { 2 } , \cdots , e _ { n - 1 } \right\} = \operatorname { s p a n } \left\{ x _ { 1 } , x _ { 2 } , \cdots , x _ { n - 1 } \right\} , span{e1,e2,,en1}=span{x1,x2,,xn1},则令 v n = x n − ∑ k = 1 n − 1 ⟨ x n , v_{n} = x_{n}−\sum _{k = 1}^{n−1}\left\langle x_{n},\right. vn=xnk=1n1xn, e k e k . e_{k}e_{k}. ekek. x 1 , x 2 , ⋯   , x n x _ { 1 } , x _ { 2 } , \cdots , x _ { n } x1,x2,,xn线性无关知, v n ≠ 0 , v _ { n } \neq 0 , vn=0, e n = v n ∥ v n ∥ , e _ { n } = \frac { v _ { n } } { \left\| v _ { n } \right\| } , en=vnvn, ∥ e n ∥ = 1 , \left\| e _ { n } \right\| = 1 , en=1, e n ⊥ e i , i = 1 , e _ { n } \perp e _ { i } , i = 1 , enei,i=1, 2 , ⋯   , n − 1. 2 , \cdots , n - 1 . 2,,n1. 又显然满足 span ⁡ { e 1 , e 2 ⋯   , e n } = span ⁡ { x 1 , x 2 , ⋯   , x n } . \operatorname { s p a n } \left\{ e _ { 1 } , e _ { 2 } \cdots , e _ { n } \right\} = \operatorname { s p a n } \left\{ x _ { 1 } , x _ { 2 } , \cdots , x _ { n } \right\} . span{e1,e2,en}=span{x1,x2,,xn}.这样一直作下去,即可得到所要求的规范正交系,

引理3的过程称为格拉姆一施密特正交化过程,容易明白, ∑ i = 1 n − 1 ⟨ x n , e i ⟩ e i \sum _ { i = 1 } ^ { n - 1 } \left\langle x _ { n } , e _ { i } \right\rangle e _ { i } i=1n1xn,eiei是向量 x n x _ { n } xn在空间 span ⁡ { x 1 , x 2 , ⋯   , x n − 1 } \operatorname { s p a n } \left\{ x _ { 1 } , x _ { 2 } , \cdots , x _ { n - 1 } \right\} span{x1,x2,,xn1}上的投影

定理4

每个非零希尔伯特空间必有完全规范正交系

证明
只对可分的情况证明.设 X X X 为可分希尔伯特空间,则存在有限或可数个向量 { x i } , \left\{ x _ { i } \right\} , {xi}, 使 span ⁡ { x i } ⁡ ‾ = X \overline{\operatorname* {\operatorname { s p a n } \left\{ x _ { i } \right\}}}= X span{xi}=X,不妨设 { x i } \left\{ x _ { i } \right\} {xi} X X X 中 的线性无关子集,否则可取 { x i } \left\{ x _ { i } \right\} {xi} 中的线性无关子集.由引理3,存在有限或可数的规范正交系 { e i } , \left\{ e _ { i } \right\} , {ei}, 使 对任何正整数 n , n , n,

span ⁡ { e 1 , e 2 , ⋯   , e n } = span ⁡ { x 1 , x 2 , ⋯   , x n } , \operatorname { s p a n } \left\{ e _ { 1 } , e _ { 2 } , \cdots , e _ { n } \right\} = \operatorname { s p a n } \left\{ x _ { 1 } , x _ { 2 } , \cdots , x _ { n } \right\} , span{e1,e2,,en}=span{x1,x2,,xn},

所以,由 ∣ e i ∣ \left| e _ { i } \right| ei 张成的线性空间包含 ∣ x i ∣ , \left| x _ { i } \right| , xi, 因此 span ⁡ { e i } ‾ ⊃ span ⁡ { x i } ‾ = X , \overline{\operatorname { s p a n } \left\{ e _ { i } \right\}} \supset \overline{\operatorname { s p a n } \left\{ x _ { i } \right\}} = X , span{ei}span{xi}=X, ∣ e i } \left| e _ { i } \right\} ei} X X X 中 完全规范正交系。

可以证明,如果 M M M M 1 M _ { 1 } M1 同为希尔伯特空间 X X X 的完全规范正交系,那么 M M M M 1 M _ { 1 } M1 具有相同的基数,称这个基数为 X X X 的希尔伯特维数,若 X = { 0 } , X = \{ 0 \} , X={0}, 则定义 X X X 的希尔伯特维数为0.由格拉姆-施密特正交化过程易知,当 X X X是有限维空间时,希尔伯特维数与线性维数一致.

为了研究希尔伯特空间及其上的线性算子,把一个抽象的希尔伯特空间表示成一个具体的希尔伯特空间是有好处的

定义5

X X X X ~ \tilde { X } X~ 是 两个内积空间,若存在 X X X X ~ \tilde { X } X~ 上 的映射 T , T , T, 使 对任何 x , y ∈ X x , y \in X x,yX及数 α , β , \alpha , \beta , α,β, 满足

T ( α x + β y ) = α T x + β T y , ( 10 ) T ( \alpha x + \beta y ) = \alpha T x + \beta T y ,\quad\quad(10) T(αx+βy)=αTx+βTy,(10)

⟨ T x , T y ⟩ = ⟨ x , y ⟩ , \langle T x , T y \rangle = \langle x , y \rangle , Tx,Ty=x,y,则称 X X X X ~ \tilde { X } X~ 同 构,并称 T T T X X X X ~ \tilde { X } X~ 上的同构映射

定理5

两个希尔伯特空间 X X X X ~ \tilde { X } X~ 同 构的充要条件是 X X X X ~ \tilde { X } X~ 具 有相同的希尔伯特维数

证明
X X X X ~ \tilde { X } X~ 同 构, T T T X X X X ~ \tilde { X } X~ 上的同构映射,由(10)易知 T T T X X X 中 完全规范正交系映射成 X ~ \tilde { X } X~ 中 完全规范正交系,并且 T T T 是一对一的,所以 X X X X ~ \tilde { X } X~ 具有相同的希尔伯特维数.反之,若 X X X X ~ \tilde { X } X~ 的 希尔伯特维数相同,不妨设 X ≠ ∣ 0 ∣ , X \neq | 0 | , X=∣0∣, 否则结论是平凡的.设 M M M M ~ \tilde { M } M~ 分 别为 X X X X ~ \tilde { X } X~ 中完全规范正交系,由假设, M M M M ~ \tilde { M } M~ 具 有相同的基数,所以可将 M M M M ~ \tilde { M } M~ 分别写成 M = { e k , k ∈ A } , M ~ = { e ~ k , k ∈ A } , M = \left\{ e _ { k } , k \in A \right\} , \tilde { M } = \left\{ \tilde { e } _ { k } , k \in A \right\} , M={ek,kA},M~={e~k,kA},其中 Λ \Lambda Λ 为与 M M M M ~ \tilde { M } M~ 等基数的指标集,由定理3及(9)式,对任何 x ∈ X x \in X xX x ~ ∈ M ~ , \tilde { x } \in \tilde { M } , x~M~,

x = ∑ k ∈ A ⟨ x , e k ⟩ e k , x ~ = ∑ k ∈ A ⟨ x ~ , e ~ k ⟩ e ~ k , x = \sum _ { k \in A } \left\langle x , e _ { k } \right\rangle e _ { k } , \quad \tilde { x } = \sum _ { k \in A } \left\langle \tilde { x } , \tilde { e } _ { k } \right\rangle \tilde { e } _ { k } , x=kAx,ekek,x~=kAx~,e~ke~k,

并且 ∑ k ∈ A ∣ ⟨ x , e k ⟩ ∣ 2 = ∥ x ∥ 2 < ∞ , ∑ k ∈ A ∣ ⟨ x ~ , e ~ k ⟩ ∣ 2 = ∥ x ~ ∥ 2 < ∞ , \sum _ { k \in A } \left| \left\langle x , e _ { k } \right\rangle \right| ^ { 2 } = \| x \| ^ { 2 } < \infty , \sum _ { k \in A } \left| \left\langle \tilde { x } , \tilde { e } _ { k } \right\rangle \right| ^ { 2 } = \| \tilde { x } \| ^ { 2 } < \infty , kAx,ek2=x2<,kAx~,e~k2=x~2<, x = ∑ k ∈ A ⟨ x , e k ⟩ e k , x = \sum _ { k \in A } \left\langle x , e _ { k } \right\rangle e _ { k } , x=kAx,ekek, T x = ∑ k ∈ A ⟨ x , e k ⟩ e ^ k , T x = \sum _ { k \in A } \left\langle x , e _ { k } \right\rangle \hat { e } _ { k } , Tx=kAx,eke^k,由引理2, T x ∈ X ˉ , T x \in \bar { X } , TxXˉ, 且对 X X X 中任意两个向量, x = ∑ k ∈ A ⟨ x , e k ⟩ e k , y x = \sum _ { k \in A } \left\langle x , e _ { k } \right\rangle e _ { k } , y x=kAx,ekek,y = ∑ k ∈ A ⟨ y , e k ⟩ e k , = \sum _ { k \in A } \left\langle y , e _ { k } \right\rangle e _ { k } , =kAy,ekek,

⟨ T x , T y ⟩ = ⟨ ∑ k ∈ A ⟨ x , e k ⟩ e ^ k , ∑ k ∈ A ⟨ y , e k ⟩ e ^ k ⟩ = ∑ k ∈ A ⟨ x , e k ⟩ ⟨ y , e k ⟩ = ⟨ x , y ⟩ . \begin{aligned} \langle T x , T y \rangle = \left\langle \sum _ { k \in A } \left\langle x , e _ { k } \right\rangle \hat { e } _ { k } , \sum _ { k \in A } \left\langle y , e _ { k } \right\rangle \hat { e } _ { k } \right\rangle \\ = \sum _ { k \in A } \left\langle x , e _ { k } \right\rangle \left\langle y , e _ { k } \right\rangle = \langle x , y \rangle . \end{aligned} Tx,Ty=kAx,eke^k,kAy,eke^k=kAx,eky,ek=x,y.

又若 x ~ = ∑ k ∈ A ⟨ x ~ , e ~ k ⟩ e ^ k \tilde { x } = \sum _ { k \in A } \left\langle \tilde { x } , \tilde { e } _ { k } \right\rangle \hat { e } _ { k } x~=kAx~,e~ke^k X ~ \tilde { X } X~ 中任何向量,令 x = ∑ k ∈ A ⟨ x ~ , e ~ k ⟩ e k , x = \sum _ { k \in A } \left\langle \tilde { x } , \tilde { e } _ { k } \right\rangle e _ { k } , x=kAx~,e~kek,由引理2知 x ∈ X , x \in X , xX, 显然 T x = x ˉ , T x = \bar { x } , Tx=xˉ, T T T 是 到 X ~ \tilde { X } X~ 上 的映射易知 T T T 也保持线性运算不变,所以 T T T X X X X ~ \tilde { X } X~ 上 同构映射,即 X X X X ~ \tilde { X } X~ 同 构.

对于可分希尔伯特空间,由定理5,并利用格拉姆-施密特方法,立即可以得到下面的推论.

推论3

任何可分希尔伯特空间必和某个 R n ( C n ) \mathbf { R } ^ { n } \left( \mathbf { C } ^ { n } \right) Rn(Cn) l 2 l ^ { 2 } l2 同构.

  • 7
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值