
自动驾驶
文章平均质量分 93
文➜视频
u013250861
这个作者很懒,什么都没留下…
展开
-
点云模型专栏(一)概述、特性、存储格式、数据集
点云数据主要是由激光雷达扫描仪进行扫描采集得到的,从本质上来讲是点云是3D空间中无序、无结构的海量数据点的集合,每个点表达目标空间分布和目标表面特性。比如说,扫描某建筑物,得到的每个虚拟的数据点将代表窗户、楼梯、墙壁等任何表面上的真实的点,且包含了如三维坐标、颜色、强度值和入射方向等属性信息。点云数据的获取不仅只有激光雷达扫描这一种方式,还可以利用RGB-D相机同时获取多帧彩色图像和深度图,再利用相机的参数间接生成点云。原创 2025-04-14 00:40:27 · 828 阅读 · 0 评论 -
3D点云数据分析与处理-传统方法与深度学习
基于3D视觉的新兴应用场景蓬勃发展,3D点云越来越受到人们的广泛关注。点云有着广泛的应用领域包括机器人技术、3D图形、自动驾驶、虚拟现实(AR/VR/MR)等。为了跟上不断增长的应用需要,研究和开发有效存储、处理的相关算法来处理点云的意义正显著上升。传统的分析算法处理点云,主要侧重于对点的局部几何特征进行编码。深度学习在图像数据处理领域取得了巨大的成功,这使得研究相应的点云神经网络结构有极其现实的迫切需求。当前的研究热点主要涉及发展用于各种点云处理任务的深度神经网络。原创 2025-04-14 00:36:59 · 847 阅读 · 0 评论 -
点云数据(Point Cloub Data)学习笔记
点云是指目标表面特性的海量点集合。通过测量仪器得到的物体外观表面的点数据集合就称之为点云。请注意:上面虽然使用的是 “物体表面”,但其实暗含的意思为 “物体空间表面”。PCD 格式标准是为了更好支持 PCL 库而诞生的。PCL库是什么?PCL(Point Cloud Library) 是一个大型跨平台开源的 C++ 编程库。该库实现了大量点云相关的通用算法和高效数据结构。涉及到点云获取、过滤、分割、配准、检索、特征提取、识别、追踪、曲面重建、可视化等。结合点云数据的一些特征,又产生了以下一些名词概念。原创 2025-04-14 00:35:18 · 1038 阅读 · 0 评论 -
3D点云之点云数据介绍
在传统的几何算法中,点云补全主要是基于点云的形状、结构和拓扑等特征进行分析和处理,以构建合理的模型。传统的基于模型匹配的方法通常需要先构建目标物体的模型,并将其与采集的点云数据进行匹配,从而识别出目标物体的位置和姿态。3.目标检测与分类:利用深度学习等方法来对点云数据进行目标检测和分类,目前常用的方法包括基于2D投影的方法、基于3D框架的方法和基于点云分割的方法等。2.点云特征提取:通过点云的几何和拓扑属性来提取特征,常见的方法包括基于形状的特征、基于法向量的特征、基于表面曲率的特征等。原创 2025-04-14 00:33:22 · 891 阅读 · 0 评论