前言
本文一开始是属于此文《GRAPE——RLAIF微调VLA模型:通过偏好对齐提升机器人策略的泛化能力》的前言内容之一(该文发布于23年12月底),但考虑到其重要性,加之那么大一张表格 看下来 阅读体验较差,故抽出取来独立成文且拆分之
当时的前言是
具身的论文解读过很多之后,便会发现整个今24年的具身模型/策略大概如下所示——目前全网独一份「(建议按照从下至上的顺序看,且所有点我都做了详尽而细致的解读,点击下表中对应的文字即可阅读,我后续也会不断完善之——毕竟还有很多并未囊括于下表中,如转载请于文章开头标明本文作者July及本文链接」
有意思的是,其中的RDT、π0都通过聚合各大机器人数据集先做预训练,然后微调,且它两的参数规模也分别达到了1B、3B
大有类似大语言模型的发展路线,比如
- 17-20年,以BERT、GPT为代表的预训练-微调模式
且从GPT3起,模型的参数规模越来越大,慢慢的不再需要针对下游特定任务做微调——一个模型搞定所有任务 - 再之后,咱们经历了GPT3.5的RLHF微调
- 及至到GPT4之后,模型在各方面的能力逼近人类甚至超越人类
你说,是不是有趣?
第一部分 从训练数据来源、动作预测策略、模型训练方法
1.1 训练数据来源:视频、仿真、人工采集
在机器人领域,互联网数据、仿真数据、真实数据等这三类数据构成了主要的数据来源
- 如果采用端到端模仿学习的方法,给定一张图像并直接输出机器人动作,这通常依赖于真实世界数据
- 如果采用端到端的强化学习RL,因为需要一个可以反复交互的环境,则往往依赖于仿真数据
当然,也有先在RL仿真环境里训练一个base model,然后再在真实环境中通过模仿学习微调——这个搞法,我司七月具身项目组 便用到过
详见如下表格
2024年具身前沿模型/策略大汇总 | 大类 | 子类/说明 | 典型代表 |
第一大块 训练数据来源 | 人类行为视频数据 | 直接用互联网上大规模的视频数据,比如YouTube上的 | 比如DexMV、MimicPlay |
受Google的Genie的启发,利用海量的无标注视频做训练——生成或预测潜在动作token | ViLLA、LAPA、Moto | ||
开源数据集 | 需要一定的整合 | 比如Open X-Embodiment等 | |
合成数据 | 视频生成模型生成数据 | 比如英伟达的GR00T N1,有用到合成数据 | |
仿真数据 | 毕竟仿真环境中训练base model,最后真实环境中微调,是常见训练方式 | 1 英伟达的Isaac Sim:整合了物理引擎PhysX、图像渲染引擎RTX、动画/电影描述格式USD | |
2 Google的MuJoCo | |||
人工收集 | 手持夹爪,拍摄/录像,收集方便 | umi/fastumi | |
动作捕捉,拍摄/录像,精度较高 | dexcap | ||
遥操,精度很高 | 1 主从机械臂遥操数据ALOHA![]() | ||
2 也可以通过手持夹爪摇操机械臂,类似松灵pika,有点类似ALOHA的升级版本![]() | |||
3 VR遥操Open-television、iDP3![]() |
1.2 动作预测策略:以ACT、Diffusion Policy、下个token自回归预测居多
2024年具身前沿模型/策略大汇总 | 大类 | 子类/说明 | 典型代表 |
第二大块 动作预测策略 | iDP3(改进的3D diffusion policy) | 可落地在人形机器人上 | 斯坦福iDP3 |
3D diffusion policy | 将3D视觉表示与扩散策略 | 3D Diffusion Policy: Generalizable Visuomotor Policy Learning via Simple 3D Representations | |
Diffusion Policy(还可基于点云) | diffusion policy基于扩散模型 | UMI/dexcap | |
Diffusion Transformer(DiT) | 基于Diffusion Transformer(DiT)改造 | 清华RDT | |
预测与动作扩散器PAD:通过联合去噪同时预测未来图像和动作 | Prediction with Action: Visual Policy Learning via Joint Denoising Process | ||
ACT基于Transformer | |||
基于下一个token预测技术,自回归式的预测动作token | 将机器人的每个动作维度分别离散化为 256 个箱子中的一个 自回归模型被训练为在给定所有先前token的情况下预测下一个token | ||
RT-2、OpenVLA | |||
自回归版π0-FAST | |||
训练一个Transformer模型来自回归地预测轨迹 | 伯克利Digit | ||
基于文本指令和视频生成模型,预测动作轨迹 模型基于GPT风格的Transformer构建,接受经过tokenized的文本和图像序列作为输入,并输出未来图像的离散token,未来的图像则通过VQGAN解码器从这些token中解码出来,自回归生成 | 字节GR2 在大规模视频数据集上预训练且机器人数据上微调,随后预测动作轨迹和视频(含GR1详解) | ||
使用一种GPT 风格的transformer对这些运动token轨迹进行自回归 | Moto:自回归方式预测未来视频片段的潜在运动token轨迹 |
1.3 模型训练方法:人形偏RL + 遥操、VLA偏预训练或微调
1.3.1 非Robotics VLM、非VLA的训练方法
2024年具身前沿模型/策略大汇总 | 大类 | 子类/说明 | 典型代表 |
第三大块 模型训练方法 | 直接真实环境中RL开训,摒弃仿真 | 真实环境中得到的RL数据微调VLM + 机器人动作微调:RL训练运行创建的数据集,可以用于二次训练,代替人类提供的例子(效果如何 待验证) | UC伯克利的Sergey Levine,于24年年底在DAI 2024上的演讲:RLDG——Reinforcement Learning Distilled Generalist |
结合视觉和人类示教与纠正的RL方法,目前暂时还是小众赛道 | UC伯克利的HIL-SERL | ||
RL仿真 + VR遥操 | 估计人类动作 + 人类动作到人形机器人的重定向「凡是人形,必涉及到基于AMASS数据集(包括SMPL-X做参数化建模)做人形运动目标的重新定位」 + sim to real(师生学习/策略蒸馏) + VR遥操 | ||
OmniH2O | |||
RL仿真训本体 + RGB遥操部署 | Retargeting、Sim-to-Real、RGB Real-time遥控 | H2O:通过重定向清除不可行的动作,然后仿真训练,最后RGB实时遥操作部署(使用训练好的Sim-to-Real模仿策略进行模仿) | |
仿真中训小脑HST(仿真中训练好之后,RGB遥操部署) 且其真实中训大脑HIT | HumanPlus:RL仿真训本体 + 人类示教(模仿学习/行为克隆)训大脑 | ||
静态数据训练 + 人类示教 | 比如通过示范数据做行为克隆,更结合前身ALOHA的静态数据做协同训练 | Mobile ALOHA 某种意义上,没有显性奖励函数定义的模仿学习里,可以把对expert action(人类专家动作)的模仿看作为奖励函数 |
1.3.2 Robotics VLM和VLA训练方法:是否预训练
2024年具身前沿模型/策略大汇总 | 大类 | 子类/说明 | 典型代表 |
第三大块 模型训练方法 | 预训练的VLA | 先对VLM基于机器人数据(开源OXE + 自采,或只开源OXE)做二次预训练(模仿人类)变成VLA,再真实环境中微调VLA | 1 π0:先在高度多样化的开源 + 自采机器人数据上进行预训练——变成了相比不二次预训练情况下更强大的VLA,然后针对所需任务进行微调 |
2 RT2和OpenVLA:只在开源OXE上做的预训练 | |||
3 CogACT:把OpenVLA的离散化动作预测换成DiT | |||
不用预训练的VLA | 其考虑到预训练成本较高 | TinyVLA | |
预训练的Robotics VLM | 针对VLM的二次预训练,通过开源OXE训练VLM变成Robotics VLM | Octo:在Open X-Embodiment数据集上进行预训练 | |
不预训练的Robotics VLM | 没有针对VLM的二次预训练,而是直接机器人数据微调VLM变成Robotics VLM | 字节RoboFlamingo:使用简单、少量的微调就可以把 VLM 变成 Robotics VLM |
第二部分 Robotics VLM和VLA中的动作预测
2.1 微调VLM之Robotics VLM和VLA中的动作预测
2.1.1 要么专门的动作头,要么下一个token自回归预测动作,要么融合扩散头和自回归
2024年具身前沿模型/策略大汇总 | 大类 | 子类/说明 | 典型代表 |
微调VLM Robotics VLM和VLA中的动作预测 | 第一类 专门的action head | 基于LSTM | Robotics VLM:字节RoboFlamingo |
基于diffusion model | Robotics VLM:Octo | ||
VLA:TinyVLA(diffusion-based head) VLA:Diffusion-VLA | |||
VLA:DexVLA 在VLM上插上1B大小的扩散动作专家,类似Diffusion VLA | |||
基于gemma_300m上的流匹配(扩散模型的变体) | VLA:π0 (流匹配微调VLM) | ||
基于Diffusion Transformer(DiT) | VLA:CogACT(相比Octo的头 更大) 英伟达的GR00T N1 | ||
第二类 基于下一个token预测技术,自回归式的预测动作token | 对于离散化token动作表示,即指将机器人的每个动作维度分别离散化为 256 个箱子中的一个 | VLA:RT-2、OpenVLA(相当于RT-2开源版) | |
打造机器人动作专用的高效Tokenizer:比扩散π0的训练速度快5倍但效果相当 | 自回归版π0-FAST | ||
第三类 融合扩散与自回归动作生成 | 考虑到 扩散头训练速度慢、但推理快,比如扩散π0 自回归训练速度快、但推理慢,比如RT-2 那就结合两者各自的优势好了,以做到训练快、推理也快 | Diffusion-VLA | |
HybridVLA |
2.1.2 训练数据形式:是文本数据还是机器人数据
微调或预训练VLM而言,一个重要的问题便是训练数据的由来
2024年具身前沿模型/策略大汇总 | 大类 | 子类/说明 | 典型代表 |
数据形式 | 大量的图像-文本数据和少量的机器人演示数据 | RT-1、Palm-e、Rt-2、RoboFlamingo * 带下划线的是做了预训练的 | |
利用带有动作标签的多样化跨机器人数据集 | CrossFormer、OpenVLA、Octo、OpenX |
2.2 直接提示VLM规划的更细,但过程中加约束
如此文《让VLM充当机器人大脑——不微调直接提示VLM做顶层任务规划:从SayCan、VoxPoser到ViLA、CoPa、ReKep》所述,有
2024年具身前沿模型/策略大汇总 | 大类 | 子类/说明 | 典型代表 |
要求VLM规划的更细 | 让模型生成动作规划的代码 | 利用VLM和LLM的常识知识,借助模型生成代码,将常识知识映射到三维空间,具体而言 | VoxPoser |
将高层次指令分解为一系列低层次技能 | 直接提示VLMs基于环境的视觉观察和高级语言指令生成一系列可执行步骤 | VILA | |
其利用嵌入在基础模型中的常识知识(比如视觉语言模型的代表GPT-4V)为开放世界机器人操控生成一系列6自由度末端执行器姿势 | 1 任务导向抓取,类似抓到锤柄 | CoPa | |
利用大模型(如 VLM 或 LLM)来推断和指定任务关键点的关系 | 也就是说,这些关系并非由人工定义,而是依赖于大模型的推理能力及其内在的知识 | ReKep |
第三部分 架构层面:是否端到端及其发展之路
2024年具身前沿模型/策略大汇总 | 大类 | 子类/说明 | 典型代表 |
是否端到端,及其发展之路 | 分层 上层任务规划策略和下层操作策略 | VLM 上层任务规划策略主要是基于文本指令和当前环境信息,利用多模态大模型技术进行任务规划,输出为文本动作序列 | SayCan、PaLM-E(组合的PaLM + ViT)![]() |
下层操作策略主要是指让机器人学会各种操作技能 输入是技能标识(文本或轨迹)和当前状态信息(环境和机器人本体),输出是末端姿态或关节角度 | RT-1、RT-Trajectory、MT-ACT![]() | ||
端到端VLA 大小脑统一,从感知直接映射到运动 | 输入为文本指令、图像,输出则是机器人操作动作(末端姿态) | RT2、OpenVLA、π0(VLM + 动作专家)![]() | |
端到端 VLA下的快慢双系统 | 人脑的双系统机制 系统一的快思考与系统二的慢思考 相当于从外面看 是个端到端的黑盒子,但如果打开黑盒子一看,内部做了分层 | Helix / HiRT、GR00T N1![]() |
第四部分 借鉴大语言模型的发展之路(含3D版的VLA)
2024年具身前沿模型/策略大汇总 | 大类 | 子类/说明 | 典型代表 |
借鉴大语言模型的发展之路 | 让VLM充当机器人大脑,做顶层任务规划 | 机器人基础模型(相当于大脑):用于整体任务规划 机器人操控模型(相当于小脑):用于精确控制 | Figure 01、清华ViLA、CoPa |
基于VLM模型GPT-4o和关系关键点约束 | rekep | ||
预训练-微调模式中把模型搞大 | 需要架构、数据双双具备 | RDT、π0 | |
把RLHF引入近具身 | 通过偏好对齐提升机器人策略的泛化能力 | GRAPE | |
把CoT引入具身 | 让具身模型学会逐步推理 | ECoT、CoT-VLA | |
把3D引入具身 | 3D VLA PointVLA SpatialVLA | ||
让大模型来打辅助 | VLM解释人类演示视频,并为机器人生成任务计划、代码 | 纽约大学:VLM See, Robot Do | |
结合「GPT4V的open-world vision能力」和重定向 | OKAMI |
更多可以查看此文《RoboVLM——通用机器人策略的VLA设计哲学:如何选择骨干网络、如何构建VLA架构、何时添加跨本体数据》
// 本文一直在持续更新、汇总2025年 最新的具身模型中..