用MEME找motif score

本文介绍了如何处理Chip-seq数据,提取400bp片段生成fasta文件,然后利用MEME-ChIP软件寻找motif,通过邮件获取结果,进一步使用FIMO分析,最终得到fimo.tsv数据文件,包含了47899个结果。
摘要由CSDN通过智能技术生成


一、处理数据

处理Chip-seq数据,得到fasta数据

1、取Chip-seq片段长度400

由于大多数(40783)分布于0-400bp,于是取起始位点终止位点的中心,左右个200的区间。
在这里插入图片描述
1.批处理批量修改文件后缀名(假设我需要把一个文件夹中的很多txt文件改为sql文件):

1)在需要被处理的文件的文件夹里先新建一个txt文本,然后在文本中写入:

      ren *.txt *.sql

 2)保存文件后关闭,然后将这个文件的后缀名改为.bat

3)双击这个bat文件,ok,这个文件夹中所有的txt文件都变成sql文件了~~

2、得到输入文件(.fa)

取完左右得到bed格式文件(CTmax-B20.200.bed),与fasta匹配(ucsc.hg19.fasta)

bedtools getfasta -fi /Users/sun/Downloads/匹配/参考基因组/ucsc.hg19.fasta -bed CTmax-B20.200.bed -fo /Use
MEME (Multiple EM for Motif Elicitation) 是一种常用的寻DNA序列中的 motifs(保守短序列模式)的软件工具。在调整Motif参数时,有几个关键设置需要注意: 1. **-letter-probs**: 这个选项用于指定背景概率模型,可以影响motif发现的敏感性和特异性。如果你有特定的背景数据,可以提供;默认情况下,它会计算从输入序列中估计的概率。 2. **-width**: 指定motif长度,即期望到的核苷酸序列的大小。增大宽度会到更长的motif,但可能会降低识别的精确度。 3. **-minw** 和 **-maxw**: 分别设定最小和最大motif宽度,可以帮助控制搜索范围。 4. **-ocutoff**: 结果阈值,表示每个motif必须有多少统计显著性才能出现在报告结果中。 5. **-nmotifs**: 预设要查motif数量。太多可能会导致过拟合,太少则可能错过重要的模式。 6. **-periodic**: 如果设置为true,允许周期性motif,这适用于像重复序列这样的情况。 7. **-revcomp**: 是否对反向互补序列也进行搜索。这对于双向分析或者考虑反向配对的系统非常重要。 当你运行MEME时,通常需要通过命令行传递这些参数,并根据实际需求调整它们。例如: ``` meme -dna -letter-probs background.txt input.fasta -motif-width 8 -ocutoff 0.05 -nmotifs 5 ``` 这里 `-background.txt` 是背景概率文件,`input.fasta` 是你的DNA序列文件。运行后,你可以根据输出的结果评估是否满意,然后调整参数再试。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值