目标检测之 “预测的边框” 和 “真实的边框”

IoU 的全称为交并比(Intersection over Union),通过这个名称我们大概可以猜到 IoU 的计算方法。IoU 计算的是 “预测的边框” 和 “真实的边框” 的交集和并集的比值。

几何概型:

其实就是简单时数学问题:概率的几何概型,计算阴影部分所占概率
在这里插入图片描述
开始计算之前,我们首先进行分析下交集和并集到底应该怎么计算:我们首先需要计算交集,然后并集通过两个边框的面积的和减去交集部分即为并集,因此 IoU 的计算的难点在于交集的计算。

为了计算交集,你脑子里首先想到的方法应该是:考虑两个边框的相对位置,然后按照相对位置(左上,左下,右上,右下,包含,互不相交)分情况讨论,来计算交集。
在这里插入图片描述
上图就是你的直觉,这样想没有错。但计算一个交集,就要分多种情况讨论,要是程序真的按照这逻辑编写就太搞笑了。因此对这个问题进行进一步地研究显得十分有必要。

让我们重新思考一下两个框交集的计算。两个框交集的计算的实质是两个集合交集的计算,因此我们可以将两个框的交集的计算简化为:
在这里插入图片描述
在这里插入图片描述

# -!- coding: utf-8 -!-
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
import tensorflow as tf
def iou(set_a, set_b):
    '''
    一维 iou 的计算
    '''
    x1, x2 = set_a  # (left, right)
    y1, y2 = set_b  # (left, right)

    low = max(x1, y1)
    high = min(x2, y2)
    # intersection
    if high - low < 0:
        inter = 0  #无交集
    else:
        inter = high - low
    # union
    union = (x2 - x1) + (y2 - y1) - inter
    # iou
    iou = inter / union
    return iou


def iou2box(box1, box2):
    '''
    两个框(二维)的 iou 计算

    注意:边框以左上为原点

    box:[top, left, bottom, right]
    '''
    in_h = min(box1[2], box2[2]) - max(box1[0], box2[0])
    in_w = min(box1[3], box2[3]) - max(box1[1], box2[1])
    inter = 0 if in_h < 0 or in_w < 0 else in_h * in_w
    union = (box1[2] - box1[0]) * (box1[3] - box1[1]) + \
            (box2[2] - box2[0]) * (box2[3] - box2[1]) - inter
    iou = inter / union
    return iou

#基于TensorFlow的IoU实现
def IoU_calculator(x, y, w, h, l_x, l_y, l_w, l_h):
    """calaulate IoU
    Args:
      x: net predicted x
      y: net predicted y
      w: net predicted width
      h: net predicted height
      l_x: label x
      l_y: label y
      l_w: label width
      l_h: label height

    Returns:
      IoU
    """

    # convert to coner
    x_max = x + w / 2
    y_max = y + h / 2
    x_min = x - w / 2
    y_min = y - h / 2

    l_x_max = l_x + l_w / 2
    l_y_max = l_y + l_h / 2
    l_x_min = l_x - l_w / 2
    l_y_min = l_y - l_h / 2
    # calculate the inter
    inter_x_max = tf.minimum(x_max, l_x_max)
    inter_x_min = tf.maximum(x_min, l_x_min)

    inter_y_max = tf.minimum(y_max, l_y_max)
    inter_y_min = tf.maximum(y_min, l_y_min)

    inter_w = inter_x_max - inter_x_min
    inter_h = inter_y_max - inter_y_min

    inter = tf.cond(tf.logical_or(tf.less_equal(inter_w, 0), tf.less_equal(inter_h, 0)),
                    lambda: tf.cast(0, tf.float32),
                    lambda: tf.multiply(inter_w, inter_h))
    # calculate the union
    union = w * h + l_w * l_h - inter

    IoU = inter / union
    return IoU

引用与参考文献:
https://blog.csdn.net/u014061630/article/details/82818112

已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页