TensorFlowX.Y核心基础与AI模型设计05:完美将模型版本从tf1.x转移至tf2.x上、global_steps与train_step的使用、动态学习率、梯度优化器

本文介绍了如何将TensorFlow 1.x模型顺利迁移到2.x版本,重点讨论了动态学习率的实现,包括tf.train.exponential_decay()函数的使用,以及不同梯度优化器如GradientDescentOptimizer、MomentumOptimizer和AdamOptimizer的比较。同时,文章还提到了global_steps和train_step的使用,以及如何处理梯度爆炸问题的技巧,如梯度裁剪。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

源代码杀手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值