【回顾经典AI神作】理解和实现ResNet(最先进的图像分类)

本文回顾了ResNet在深度学习中的重要地位,解释了ResNet如何解决深度网络训练时的退化问题,通过引入残差块使模型能够有效学习。介绍了ResNet在ILSVRC和COCO竞赛中的优异表现,并讨论了Pytorch中的实现。通过对比实验,展示了ResNet在网络加深时保持甚至提高性能的能力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

以下三篇是介绍和改进残差网络的论文:
用于图像识别的深度残差学习(

ResNet成功了吗?

在ILSVRC 1分类竞赛中获得第一名,前2015名错误率为5.3%(集成模型)
在ILSVRC和COCO 1竞赛中荣获ImageNet检测,ImageNet本地化,Coco检测和Coco分割的第一名。
用 ResNet-16 替换 Faster R-CNN 中的 VGG-101 层。他们观察到相对改善了28%
具有 100 层和 1000 层的高效训练网络。

ResNet解决了什么问题?

问题:
当深度网络开始收敛时,就会暴露出一个退化问题:随着网络深度的增加,精度变得饱和,然后迅速下降。

看到有辱人格在行动:
让我们通过向浅层网络添加更多层来获取其更深层次的网络。

最坏情况:更深的模型的早期层可以用浅层网络代替,其余层可以只充当恒等函数(输入等于输出)。
在这里插入图片描述
有益的场景:在更深的网络中,额外的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

源代码杀手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值