数学大模型MAmmoTH:通过混合说明调整建立数学通才模型

在这里插入图片描述

向悦和陈文虎是该项目的主要作者。他们这个项目推出 MAmmoTH,这是一系列专为解决一般数学问题而定制的开源大型语言模型 (LLM)。 MAmmoTH 模型在 MathInstruct 上进行训练,MathInstruct 是我们精心策划的指令调整数据集。 MathInstruct 已编译 来自 13 个具有中间原理的数学数据集,其中 6 个具有我们新整理的原理。它拥有思想链(CoT)和思想计划(PoT)基本原理的混合,并且还确保广泛的 涵盖数学的不同领域。 CoT 和 PoT 的混合不仅可以释放工具使用的潜力,还可以针对不同的数学问题提供不同的思维过程。因此,MAmmoTH 系列实质上 在所有规模的 9 个数学推理数据集上,其性能优于现有开源模型,平均准确度增益在 12% 到 29% 之间。值得注意的是,我们的 MAmmoTH-7B 模型在 MATH(竞赛级别)上达到了 35% 数据集),超过最好的开源7B模型(WizardMath)25%,MAmmoTH-34B模型在MATH上达到46%的准确率,甚至超过了GPT-4的CoT结果。我们的工作强调了多样化问题的重要性 覆盖范围以及在开发高级数学通才模型时使用混合原理。

项目地址:https://tiger-ai-lab.github.io/MAmmoTH/
在这里插入图片描述
在这里插入图片描述

参考资料

https://www.aibase.com/zh/tool/34999

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

源代码杀手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值