基于工业级数据驱动和学习的车辆动态标定算法

我们在此介绍一种基于机器学习的自动校准方法

该纵向自动校准系统已经部署

到百度阿波罗百辆以上的自驾车辆

(仅包括混合动力系列车辆和电子交付)

车辆)自2018年4月开始。截至2018年8月27日,它已经测试了超过两千小时,一万公里

(6213英里)并且被证明是有效的。

此外,车辆动力学通常

在驾驶过程中发生显著变化(即负载变化、车辆

零件随时间磨损、表面摩擦[4])和手动

校准不可能覆盖它们。

综上所述,令人惊讶的是,大多数研究论文并没有试图解决这一手动校准难题。人们可以把这归因于这样一个事实,即大多数以研究为导向的项目只关注很少的车辆。为了解决这一特定于工业的问题,本文提出了一种基于离线模型和在线学习的新型自动校准(纵向动力学)系统。

以前的研究已经调查了纵向控制

算法,并将其视为一项具有挑战性的任务

问题[5]、[6]、[7]。一个主要挑战在于使命

不可能-建立精确的纵向车辆

实时动态[8]、[9]、[10]。一种带参数的控制模型

精确的纵向车辆动力学桥梁之间的间隙

所需速度和车辆节流/制动指令。

一种流行的解决方案是建立这种状态空间关系

基于牛顿公式[11]、[12]、[13]、[14]。然而,

传动系统、动力传动系系统和执行器系统

这些都非常复杂。不仅很难对所有这些进行建模

但它也需要不可接受的计算时间

涉及更多的系统。

在本文中,我们将从

另一种观点。我们考虑整个纵向

控制算法作为一个端到端问题,可以

分两步解决:(1)基于人类驾驶数据,我们

首先产生一个校准表,它需要节流门,制动器,

和速度作为输入,并输出加速度(2) 然后

复杂的在线算法可以正确地更新表格

涵盖各种车辆动态。我们的结果表明

自动校准系统确实节省了大量的成本

缩短了时间,提高了控制精度。校准正在进行中

而且自动化和智能化,因此,适用于

大规模自动驾驶车辆部署

 

:离线模型根据手动驾驶数据生成一个初始校准表,该表最能反映

车辆行驶时的纵向性能。这个离线算法的工作流程包括:(1)采集人

驱动数据,(2)预处理数据并选择输入特点:(3)通过机器生成校准表

学习模式。

:在线算法即时调整

自动驾驶中基于实时反馈的离线表格

模式它的目标是根据当前的车辆动力学进行最佳匹配

基于手动驾驶数据建立的离线模型。该算法必须处理的几个挑战包括频繁的

车辆载荷变化与机械部件疲劳从长远来看。在线算法的工作流程包括:

(1) 实时收集车辆状态和反馈(2)预处理和过滤数据,(3)调整校准表

因此。

B. Data Preprocessing

因为真实世界的数据总是带有噪音,所以它是真实的

对离线模型和在线模型的数据预处理至关重要

学习算法。请注意,由于数据来源不同,

脱机时使用单独的数据预处理方法

模型和在线学习算法。

1) 离线模型数据预处理:离线模型

人工驾驶数据作为输入。节流/制动值,

选择速度和纵向加速度作为特征

对于这个模型。请注意,节流模型和制动模型

他们分别接受训练

由于人类驾驶数据天生就有噪音且不均匀(即速度/加速度分布不均匀 在驾驶过程中),阿波罗控制模块需要执行几个步骤清除数据。首先,等式2中的平均滤波器用于

平滑数据。此外,等式3用于移除具有横向摆动的数据。

最后但并非最不重要的一点是,等式4被强制删除

异常值。

2) Online Learning Data Preprocessing: Online learning
algorithm frequently adjusts calibration table built by offline
model, on the basis of real-time vehicular status feedback in
self-driving mode. The selected features for this algorithm
are: a) throttling/braking commands; b) speed; c) desired
acceleration; d) actual acceleration.

2) 在线学习数据预处理:在线学习

算法经常调整离线建立的校准表

模型,基于实时车辆状态反馈

自动驾驶模式。此算法的选定功能

是:a)节流/制动指令;b) 速度;c) 期望加速度d) 实际加速度

同样仅使用符合等式3的数据。同时,由于涉及某些微分技术(详见下一节),我们使用等式5来保证整个控制命令序列的单调性。

至于实时数据采集,人们会期望

响应延迟(即节流/制动之间的时间

正在发送的命令和相应的加速度

(已执行)由车辆执行器引起。这种拖延是不可避免的

影响数据质量,这是一种常见且有用的技术

是以合理的延迟从传感器收集数据

估计[21]。在我们的例子中,我们测量加速度

通过IMU(惯性测量单元),200毫秒后

发送节流/制动命令,作为由该命令驱动的实际加速。巴特沃斯低传球

滤波器,阶数为3,截止频率为2 Hz,

然后用于消除高频波动。万一

200毫秒的延迟估计可能并不总是正确的

适当情况下,等式6用于进一步确保数据一致性。

下边这个用于强化约束

C. Offlfline Model Algorithm

伪算法1演示了脱机操作的过程

模型训练过程。数据首先按照第II-B.1节(第1行至第8行)所述进行预处理,然后,

建立了不同的节流和制动模型

(第9行至第10行)。离线算法模型中使用标准的三层前馈神经网络,带有一个sigmoid

函数为激活函数,均方误差为

成本函数。该网络是使用Tensorflow和

内置的Adam优化器。相比之下,我们评估了

基于多元传统机器学习的回归方法

脱机模式:

高斯过程回归[22],具有多项式核。它是一种无模型算法,用于解决不同领域的回归问题[23]、[24]、[25]、[26]。

线性回归,一种基本的线性回归模型

内核

支持向量机[27],具有多项式核。

•M5P[28],M5模型树。

•随机林[29],具有100次迭代。

这些方法的实施和评估采用了

WEKA[30]。可以找到详细的设置和参数

在韦卡。

D. Online Learning Algorithm

对于每个控制周期,在线学习算法都会更新

基于实时车辆反馈的校准表。一旦

调整后,新表从下一个表开始立即生效

控制周期。伪算法2给出了实现

实时校准过程的细节。

首先通过第1行到第5行对数据进行预处理

速度和实际速度已经收敛(等式8),算法停止校准过程(第6行到第7行)。

除距离因素外,相似性成本(costsimilarity)是

定义为等式13。通常,相似性成本

保留原始表。这是因为我们假设

初始表格相当准确,不应修改

在任何短时间内都会发生显著的变化。

III. RESULT

 

使用两种类型的车辆(表一)测试

不同算法下的性能:(1)混合乘客

车辆-林肯MKZ(2) 仅电子交付车辆

-Neolix AX1[31]1。

B离线模型评估

离线模型在Lincoln MKZ上进行了交叉试验

验证和道路性能。在本节中,测试车辆

被置于中等负荷,例如两名乘客加上标准

车载设备,总共约200公斤。

Lincoln MKZ的动力系统比Neolix AX1更复杂。因此,如果离线校准模型有效

在Lincoln MKZ上很好,在Neolix AX1上应该可以很好地工作

也是(确实如此,请参见下一节)。

TABLE III: Offlfline Calibration Comparison

 

1) 交叉验证:表II显示了中所述离线校准模型的十倍交叉验证结果

第II-C节。注意,MAE指的是平均绝对误差,

而RMSE是指均方根误差。

 

 

在所有测试的算法中,高斯过程回归,

首先对线性回归、支持向量机进行了研究

由于他们的表现不佳,他们被解雇了。随机森林

相当好,但最好的结果是使用神经网络,这在一般情况下,能够实现

与节流的[0,4]m/s2有效范围和制动的[6,0]m/s2有效范围相比,精度在3%以内。综上所述,选择神经网络作为离线校准模型。

使用阿波罗校准工具生成手动校准表。????

 

C. Online Algorithm Evaluation

在这份手稿中,我们提出了一个纵向控制

校准算法,包括离线校准

模型和在线校准算法。对于离线用户

校准模型,我们已经测试了相当多的机器

学习技巧(见表二),并最终发现

端到端解决方案(神经网络)。我们也尝试过

多种数据预处理方法,以获得干净、可靠的数据

从大量数据和噪音中提取有用数据(参见

第II-B节)。与离线校准相反,我们选择了

在线校准的无模型方法。具体来说,是在线的

以梯度下降方式进行校准(参见

第II-D节)。因为在线校准运行频率很高

(即在我们的例子中为100 Hz),梯度下降是一种更可靠的方法

更新校准表的方法,无需选择

一个错误的模型。

结果表明,启用校准后,我们的测试

在控制精度方面,车辆表现明显更好

(速度/站错误)。此外,该算法已得到验证

部署到多个百度阿波罗自动驾驶车辆,包括标准混合动力家庭车辆和电子车辆

仅限送货车辆。截至2018年8月27日,已

测试时间超过两千小时,大约十小时

数千公里(6213英里)道路测试。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值