Livox-mid360驱动安装

环境:
Ubuntu20.04+ROS-Noetic
官方链接:

https://github.com/Livox-SDK/livox_ros_driver2

https://github.com/Livox-SDK/Livox-SDK2

新建或选择一个[work_space]/src/

例如livox_ws/src

在src文件夹内右击选择"open in terminal"

git clone https://github.com/Livox-SDK/livox_ros_driver2.git ws_livox/src/livox_ros_driver2
git clone https://github.com/Livox-SDK/Livox-SDK2.git
cd ./Livox-SDK2/
mkdir build
cd build

                
### 关于Livox-Mid360与FAST_LIO源码的数据转换及定位信息缺失解决方案 在使用Livox-Mid360激光雷达配合FAST_LIO进行3D建图的过程中,如果发现数据转换后存在定位信息缺失的情况,通常可能是由于以下几个原因引起的: #### 1. 数据同步问题 FAST_LIO依赖IMU和LiDAR之间的严格时间戳同步。如果两者的时间戳不同步或者未正确配置,则可能导致无法生成有效的位姿估计。因此,在启动FAST_LIO之前,需确认IMU和LiDAR数据流已通过ROS话题或其他方式完成精确的时间戳匹配[^1]。 #### 2. 点云输入为空 当FAST_LIO接收到的点云数据为空时,会触发错误提示`Cannot create a KDTree with an empty input cloud!`。这表明某些帧中的点云未能成功传输到算法中。可以通过修改代码逻辑来处理这种情况,例如增加条件判断语句以跳过空点云帧: ```cpp if (!laserCloudNonFeatureFromLocal->empty()) { kdtreeNonFeatureFromLocal->setInputCloud(laserCloudNonFeatureFromLocal); } ``` 上述代码片段确保只有非空点云才会被传递给KD树构建过程[^3]。 #### 3. IMU初始化失败 FAST_LIO需要利用IMU数据来进行初始姿态估计。如果IMU校准不充分或传感器噪声过大,可能会导致定位信息丢失。建议检查IMU驱动程序设置以及硬件连接状态,并验证其输出频率是否满足FAST_LIO的要求(一般推荐大于等于100Hz)。此外,可以尝试调整FAST_LIO内部参数文件中的IMU相关选项,比如重力加速度阈值等[^2]。 #### 4. TF变换异常 在ROS环境中运行FAST_LIO时,TF框架用于描述各个坐标系间的相对关系。一旦这些变换矩阵计算有误,就会造成最终地图显示位置漂移甚至完全无解算结果的现象。为此,应仔细核对launch文件里指定的世界参考系(world frame id)、机器人基座(base link)以及其他关联节点名称的一致性。 综上所述,针对Livox-Mid360搭配FAST_LIO实现高精度三维重建过程中遇到的各种挑战,可以从以上几个方面逐一排查并优化系统性能表现。 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值