电场强度,电势以及PN结耗尽层宽度

      士别三日,我们继续跟进我们半导体物理的基础知识,今天来分享电场强度的概念与计算。我们可以想象,空间电荷是一正一负的,并且相互分离就产生了耗尽层电场。如图1(这次不是手画的了)所示,在N区的 X = + X{n}_{} X = - X{p}(这是一个正常的坐标轴)处空间电荷区突然中止。

图1

半导体内的电场可以由一维泊松方程确定(对于泊松方程,想必大家是既熟悉又陌生,后期会简单介绍):

\frac{d^{2}\phi \left ( x \right )}{dx^{2}}=\frac{-\rho \left ( x \right )}{\xi _{s}}= -\frac{dE\left ( x \right )}{dx}

电势的二阶导\frac{d^{2}\phi \left ( x \right )}{dx^{2}}等于负的电场的一阶导-\frac{dE\left ( x \right )}{dx},等于负的体电荷密度与半导体介电常数的比\frac{-\rho \left ( x \right )}{\xi _{s}}。然后我们知道电荷密度{\rho \left ( x \right )}为 

                                                                 {\rho \left ( x \right )}=-eN{a}  ,         -X{p} <X<0

                                                                 {\rho \left ( x \right )}=eN{d} ,              0<X<X{n}

所以对电场积分(大家可能忘记怎么积分了,我把所有公式放在最后,考研要考),由于PN结表面电荷密度不存在,所以电场函数是连续的。

                                                           E=\frac{-eN{a}}{\xi _{s}}\left ( X+X{p} \right )             -X{p\leqslant X\leq 0}

                                                          E=\frac{-eN{d}}{\xi _{s}}\left ( X{n}-X \right )              0\leq X\leq X{n}

      为什么这个答案是这样呢?这是因为热平衡状态下没有电流流过半导体,可以看作-X{p> X}的电中性P型区内电场为0,令-X{p= X},算出了积分常数C。同理,X{n= X}处的电场为0,可以算出积分常数C。在冶金结所在处,也就是X = 0处,函数依然是连续的,代入上述方程,且令它们相等,可得

N{a}X{p} = N{d}X{n}

说明P区内每单位面积的负电荷数与N区内每单位面积的正电荷数是相等的。在冶金结处的电场为该函数的最大值,如图2(手没有抖)所示,

图2


      我们说完电场强度,与其有关的就是电势大小。对电势进行积分,同时设-X{p= X}处电势为0,可以计算出积分常数(直接给结果跳过计算,计算交给数学家来算,没毛病。但考研计算要写过程,别忘了),P区电势可得,

                                                       \phi\left ( X \right )=\frac{eN{a}}{2\xi _{s}}\left ( X+X{p} \right )^{2}           -X{p\leqslant X\leq 0}

同理可以得到N区电势,

                                    \phi\left ( X \right )=\frac{eN{d}}{2\xi _{s}}\left ( X{n}\cdot X-\frac{X^{2}}{2} \right )+\frac{eN{a}}{2\varepsilon _{s}}{X_{p}}^{2}        0\leq X\leq X{n}

 通过上述的两个表达式,我们可以得到PN结随距离变化的曲线如图3所示,

图3

V_{bi}=\left | \phi \left ( X=X_{n} \right ) \right |=\frac{e}{2\varepsilon _{s}}\left ( N_{d}{X_{n}}^{2} +N_{a}{X_{p}}^{2}\right )

图3中可以看见 X = X{n} 处的电势大小与内建电势差大小相同。我们已知上述表达式,那么就可以推导出我们耗尽层的宽度,

                                             X_{n}=\left \{ \frac{2\xi _{s}V_{bi}}{e}\left [ \frac{N_{a}}{N_{d}}\right ]\left [ \frac{1}{N_{a}+N_{d}} \right ] \right \}^{\frac{1}{2}}

                                             X_{p}=\left \{ \frac{2\xi _{s}V_{bi}}{e}\left [ \frac{N_{d}}{N_{a}}\right ]\left [ \frac{1}{N_{a}+N_{d}} \right ] \right \}^{\frac{1}{2}}

W=X_{n}+X_{p} =\left \{ \frac{2\xi _{s}V_{bi}}{e}\left [ \frac{N_{a}+N_{d}}{N_{a}N_{d}} \right ] \right \}^{\frac{1}{2}}

其中PN结内耗尽层的最大电场很大。当N区掺杂浓度比P区大时,N_{d}可以看成是无穷大,N区宽度为0;当P区掺杂浓度比N区大时,N_{a}可以看成是无穷大,P区宽度为0。由上述表达式可以看出耗尽层的宽度与该区域掺杂浓度成倒数关系,换句话说就是耗尽层主要扩展到低掺杂区域(这个知识点和上述4个公式很基础,考试考研中也经常考查到)(最后一个公式中,如果引入了偏压,就直接加在V_{bi}上。反偏电压是相加,正偏电压是相减。我们可以想象为反偏W变长,正偏W变短)。

      最后总结(吐槽)一下,这些公式(积分除外)都是手打的,图是电脑画的,这些知识点是很基础且常考的,希望可以帮助到大家,顺便说一下,这三幅图考试也经常画(有些符号在不同的教材里不一样,请参考考试要求的教材)。


积分公式:


       

      这一篇关于PN结耗尽区的电场强,电势和宽度的知识分享(第二篇)就到这里结束啦!后期不定时有其他部分的学习知识点,如果有错误,不合适或者需要改进的地方,欢迎批评指正指导呀!!!喜欢的话就请一键三连,感谢大家,发文章的初心就是打好半导体物理和器件的基础,能进一步学习模拟集成电路。作为一个模拟集成电路的学习者和工作者,路漫漫其修远兮,可以私信加我chat,一起进入模拟IC讨论群,群里资源皆可共享,各种问题相互讨论共同进步!!!为我国的集成电路事业添砖加瓦。人间很美好,但请相信恶魔在人间👿。

  • 6
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
对于一个矩形槽,可以采用有限元方法求解其电场强度电势分布。以下是一个简单的 Matlab 代码示例: ```matlab % 定义矩形槽的几何参数 a = 0.1; % 矩形槽宽度 b = 0.2; % 矩形槽长度 h = 0.01; % 矩形槽深度 % 定义计算域 Lx = 1; % x 轴长度 Ly = 1; % y 轴长度 Nx = 50; % x 轴网格数 Ny = 50; % y 轴网格数 % 定义材料参数 epsilon0 = 8.85e-12; % 真空介电常数 epsilonr = 4; % 相对介电常数 epsilon = epsilon0 * epsilonr; % 材料介电常数 % 建立有限元模型 model = createpde(); % 定义几何体 rect = [3 4 -a/2 a/2 a/2 -a/2 -h -h]; % 矩形槽坐标 g = decsg(rect); % 创建几何体 geometryFromEdges(model,g); % 定义边界条件 applyBoundaryCondition(model,'dirichlet','Edge',1:model.Geometry.NumEdges,'u',0); % 定义偏微分方程 pde = createpde('electrostatics','static'); pde.Geometry = model.Geometry; pde.EquationCoefficients.epsilon = epsilon; % 网格生成 mesh = generateMesh(model,'Hmax',0.02); % 求解电势分布 result = solvepde(pde,mesh); % 计算电场强度 [Ey,Ex] = gradient(-result.NodalSolution); % 由于 Matlab 中的偏微分方程求解器求解的是负的电势,因此这里加个负号 E = sqrt(Ex.^2 + Ey.^2); % 绘制电势分布和电场强度 figure; pdeplot(model,'XYData',result.NodalSolution,'ColorMap','jet'); title('Electric Potential Distribution'); xlabel('x'); ylabel('y'); colorbar; figure; pdeplot(model,'FlowData',[Ex;Ey],'ColorMap','jet'); title('Electric Field Distribution'); xlabel('x'); ylabel('y'); axis equal; colorbar; ``` 需要注意的是,这个代码示例只是一个简单的模型,实际的矩形槽可能会更加复杂,需要根据具体情况进行调整。另外,由于矩形槽是一个二维几何体,因此这里只考虑了二维情况。如果需要考虑三维情况,需要使用三维有限元模型进行求解。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值