4D毫米波雷达点云处理思考

4D毫米波雷达提供距离、速度、水平和俯仰角度信息,如TI的iwr1443和iwr2243产品。4D成像雷达通过大量天线孔径实现高角度分辨率,生成点云以呈现目标轮廓。点云质量、高动态范围及聚类、跟踪算法是关键,包括DBSCAN、多帧联合聚类等。文章还提及了目标跟踪的航迹起始、跟踪滤波(如卡尔曼滤波)和数据关联技术。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

4D毫米波雷达,指的是距离、速度、水平角度和俯仰角度四个维度的信息,其实就比传统毫米波雷达多了一个高度信息的获取,并不是一个很新的东西,比如像TI的iwr1443,3发4收,MIMO虚拟孔径可达到12个孔径,垂直2个,水平8个。其实在17年就上市了。目前很火的4D毫米波雷达准确讲其实是4D成像雷达,比如TI的iwr2243产品。

但极少数雷达厂商为了吸引投资者眼球,在4D的基础上增加上雷达散射截面积、微多普勒或者其他维度信息,自称5D成像雷达。不过业内一般仅提4D成像雷达,把RCS、微多普勒等信息当作目标的特殊属性提取特征,最后采用机器学习模型实现目标分类。

 

与传统毫米波雷达相比,4D成像雷达的特点就是很多的天线孔径,获得的就是更高的角度高分辨,得到的点云数量是传统毫米波雷达的数十倍,根据目前雷达企业的产品指标一般每秒(15~20帧)数万个点。如此密集的散点簇组合后被称为点云,点云能够在一定程度上体现目标的轮廓,就达到成像的效果,这就是4D成像雷达的由来,但和激光雷达(Lidar)、特别是合成孔径雷达(SAR)相比原理上还是很不一样的,当然成像精度也不能比。

虽然点云变多可以得到目标的轮廓,但点云数量并不是越多越好,重要的是提高点云的质量。其中,一个很重要的指标是高动态范围,即不仅可以探测到一辆车,也要探测到车旁边的易拉罐。

获得点云之后,就要进行聚类、跟踪和识别了,这些都属于雷达数据处理算法,也是车厂和雷达整机厂重点关注的地方(未来发展趋势雷达信号处理算法部分被芯片厂商固化)。

点云聚类算法:

聚类算法并不是必须的,有时候不使用聚类算法也行(比如群目标跟踪算法)。常用的聚类算法是DBSCAN,但对于实际场景中如何区分汽车和汽车旁边的行人,并不会引起同簇分裂和异簇合并,却没有那么简单。一些新的聚类算法被提出用于提高算法执行效率或者改善聚类效果,比如多帧联合聚类、分阶段二次聚类等。

点云跟踪算法:

目标跟踪算法主要涉及航迹起始、跟踪滤波和数据关联三大核心技术。航迹起始有逻辑法(滑窗法)、直观法、Hough变换法。跟踪滤波采用卡尔曼滤波,卡尔曼滤波有很多中,如KF、EKF、UKF。关联算法有单目标采用NN、PDA,多目标采用JPDA、匈牙利匹配等。

 PS:TI的官网文档《Tracking radar targets with multiple reflection points 》详细的介绍群目标跟踪算法

 

 

### 4D 毫米波雷达点云数据处理及应用 #### 理解4D毫米波雷达特性 4D毫米波雷达能够提供距离、速度、水平角度以及俯仰角度四个维度的数据,这使得该技术不仅限于检测物体的存在与否,还能精确描绘目标的空间位置及其运动状态。相较于传统的三维毫米波雷达增加了高度信息的获取能力[^1]。 #### 点云数据预处理 对于来自4D毫米波雷达传感器采集到的大规模原始点云数据,在实际应用前通常需要经过一系列预处理操作来提高后续分析的有效性和准确性: - **去噪**:去除由于环境干扰或其他因素引起的异常值; - **坐标转换**:将不同视角下的测量结果统一至同一参考系内; - **下采样**:减少冗余点的数量以降低计算复杂度; 这些步骤有助于改善输入质量并加速算法执行效率[^2]。 #### 关键技术实现 为了更好地理解和利用4D毫米波雷达成像特点,可以采用MATLAB等工具来进行模拟实验或数据分析工作。下面是一个简单的例子展示如何生成基本的点云图像: ```matlab % 创建随机分布的目标点集作为示例数据源 numPoints = 500; pointsXYZV = randn(numPoints, 4); % XYZ表示空间坐标,V代表反射强度(即亮度) figure; scatter3(pointsXYZV(:,1), pointsXYZV(:,2), pointsXYZV(:,3), ... [], pointsXYZV(:,4), 'filled'); colorbar; title('Simulated Point Cloud from 4D mmWave Radar'); xlabel('X Axis (meters)'); ylabel('Y Axis (meters)'); zlabel('Z Axis (height meters)'); ``` 此段代码创建了一组带有噪声特性的虚拟对象,并通过`scatter3()`函数绘制出了它们在三维空间中的相对位置关系图谱。这种可视化方法可以帮助研究人员直观感受所研究场景内的结构布局情况。 #### 实际应用场景探讨 随着自动驾驶汽车和其他智能交通系统的快速发展,4D毫米波雷达因其全天候工作的优势而备受关注。具体来说,在恶劣天气条件下(如下雨、大雾),光学摄像头可能无法正常运作时,这类设备却依然能保持较高的探测精度和可靠性。此外,它还可以应用于无人机避障导航、工业自动化等领域中,为机器视觉提供了更加丰富的感知手段。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值