(1,1)类型机器人的运动学建模与驱动

Parameterization

Figure shows the schematic representation of the robot ( 1 , 1 ) (1,1) (1,1)
在这里插入图片描述

【考点1】Table of parameters of (1,1) robot

wheelL α \alpha αd β \beta β γ \gamma γ φ \varphi φ Φ = α + β + γ \Phi=\alpha+\beta+\gamma Φ=α+β+γ
1 f 1f 1fa − π 2 -\frac{\pi}{2} 2π00 π 2 \frac{\pi}{2} 2π φ 1 f \varphi_{1f} φ1f0
2 f 2f 2fa π 2 \frac{\pi}{2} 2π00 − π 2 -\frac{\pi}{2} 2π φ 2 f \varphi_{2f} φ2f0
3 s 3s 3sb00 β 3 s \beta_{3s} β3s0 φ 3 s \varphi_{3s} φ3s β 3 s \beta_{3s} β3s

【考点2】configuration vector q
q = [ x , y , θ , β 3 s , φ 1 f , φ 2 f , φ 3 s ] T q=\left[x, y, \theta, \beta_{3 s}, \varphi_{1 f}, \varphi_{2 f}, \varphi_{3 s}\right]^{T} q=[x,y,θ,β3s,φ1f,φ2f,φ3s]T

Configuration kinematic model

【考点3】J,C矩阵求解
查找老师的memnto,一定要事先对应好轮子的类型 ( v t = 0 ) (v_t =0) (vt=0)
J 1 = [ 1 0 a 1 0 − a cos ⁡ β 3 c sin ⁡ β 3 c b sin ⁡ β 3 c ] J_{1}=\left[\begin{array}{ccc} 1 & 0 & a \\ 1 & 0 & -a \\ \cos \beta_{3 c} & \sin \beta_{3 c} & b \sin \beta_{3 c} \end{array}\right] J1=11cosβ3c00sinβ3caabsinβ3c
J 2 = − r I 3 × 3 J_2 = -rI_{3\times 3} J2=rI3×3

( v n = 0 ) (v_n =0) (vn=0)
C 1 = [ 0 1 0 0 1 0 − sin ⁡ β 3 c cos ⁡ β 3 c b cos ⁡ β 3 c ] C_{1}=\left[\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 1 & 0 \\ -\sin \beta_{3 c} & \cos \beta_{3 c} & b \cos \beta_{3 c} \end{array}\right] C1=00sinβ3c11cosβ3c00bcosβ3c
C 2 = [ ] C_2 = [\quad] C2=[]
【考点4】Degree of mobility
C 1 ∗ = [ C 1 f C 1 s ] = = [ 0 1 0 0 1 0 − sin ⁡ β 3 c cos ⁡ β 3 c b cos ⁡ β 3 c ] C_{1}^{*}=\left[\begin{array}{c} C_{1 f} \\ C_{1 s} \end{array}\right]==\left[\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 1 & 0 \\ -\sin \beta_{3 c} & \cos \beta_{3 c} & b \cos \beta_{3 c} \end{array}\right] C1=[C1fC1s]==00sinβ3c11cosβ3c00bcosβ3c
Degree of mobility δ m = d i m ( K e r ( C 1 ∗ ) ) = 3 − r a n k ( C 1 ∗ ) = 3 − 2 = 1 \delta_m = dim(Ker(C_{1}^{*}))=3-rank(C_{1}^{*})=3-2 =1 δm=dim(Ker(C1))=3rank(C1)=32=1
【易错点】Professor:As I have already pointed out after continuous evaluation , you have to justify that the rank of C1* is 2 whatever β 3 s \beta_{3s} β3s. It’s easy but you have to do it.

C 1 ⋅ m Ω 0 ( θ ) ⋅ ξ ˙ = C 1 ⋅ m ξ ˙ = 0 C_{1} \cdot^{m} \Omega_{0}(\theta) \cdot \dot{\xi}=C_{1} \cdot m \dot{\xi}=0 C1mΩ0(θ)ξ˙=C1mξ˙=0
Thus, m y ˙ = 0 ^m\dot y = 0 my˙=0 and − s i n ( β 3 s ) m x ˙ + 0 + b c o s ( β 3 c ) m θ ˙ = 0 -sin(\beta_{3s})^m\dot x + 0 + bcos(\beta_{3c})^m\dot \theta = 0 sin(β3s)mx˙+0+bcos(β3c)mθ˙=0,we can get a base.
∑ = [ 1 s i n ( β 3 s ) , 0 , 1 b c o s ( β 3 s ) ] T \sum = [\frac{1}{sin(\beta_{3s})},0,\frac{1}{bcos(\beta_{3s})}]^T =[sin(β3s)1,0,bcos(β3s)1]T

Posture Kinematic Model

在这里插入图片描述 u s = β s ˙ u_s =\dot { \beta_s} us=βs˙,是已经知道的,我们要看看 u m u_m um ξ \xi ξ之间的关系。
0 Ω m ( θ ) = [ cos ⁡ θ − sin ⁡ θ 0 sin ⁡ θ cos ⁡ θ 0 0 0 1 ] ^0\Omega_m(\theta) = \left[\begin{array}{ccc} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{array}\right] 0Ωm(θ)=cosθsinθ0sinθcosθ0001 ∑ = [ 1 s i n ( β 3 s ) , 0 , 1 b c o s ( β 3 s ) ] T \sum = [\frac{1}{sin(\beta_{3s})},0,\frac{1}{bcos(\beta_{3s})}]^T =[sin(β3s)1,0,bcos(β3s)1]T
写到这里突然觉得我们的 ∑ \sum 没有分母会更好计算一点。
ξ = [ cos ⁡ θ s i n ( β 3 s ) sin ⁡ θ s i n ( β 3 s ) 1 b c o s ( β 3 s ) ] u m \xi=\left[\begin{array}{c} \frac{\cos \theta}{sin(\beta_{3s})} \\ \frac{\sin \theta}{sin(\beta_{3s})} \\ \frac{1}{bcos(\beta_{3s})} \end{array}\right] u_m ξ=sin(β3s)cosθsin(β3s)sinθbcos(β3s)1um

Configuration kinematic model

在这里插入图片描述【考点4】D,E矩阵求解
We do not have castor wheels,so D = [ ] D = [\quad] D=[].在 S ( q ) S(q) S(q)中可以不写这一行。
E ( β s , β c ) = − J 2 − 1 ⋅ J 1 ( β s , β c ) = − ( − r I 3 × 3 ) − 1 J i = 1 r J 1 ( β s , β c ) \mathbf{E}\left(\beta_{s}, \beta_{c}\right)=-\mathbf{J}_{2}^{-1} \cdot \mathbf{J}_{1}\left(\beta_{s}, \beta_{c}\right)=-(-rI_{3\times 3 })^{-1}J_i=\frac{1}{r}J1(\beta_{s}, \beta_{c}) E(βs,βc)=J21J1(βs,βc)=(rI3×3)1Ji=r1J1(βs,βc)
Thus, E = 1 r [ 1 0 a 1 0 − a cos ⁡ β 3 c sin ⁡ β 3 c b sin ⁡ β 3 c ] E =\frac{1}{r}\left[\begin{array}{ccc} 1 & 0 & a \\ 1 & 0 & -a \\ \cos \beta_{3 c} & \sin \beta_{3 c} & b \sin \beta_{3 c} \end{array}\right] E=r111cosβ3c00sinβ3caabsinβ3c

For the work to be complete, you need to study alternative motorization, determine possible singularities and, if any, interpret what happens physically at the singularity.

E ∑ = 1 r [ 1 0 a 1 0 − a cos ⁡ β 3 c sin ⁡ β 3 c b sin ⁡ β 3 c ] [ 1 s i n ( β 3 s ) , 0 , 1 b c o s ( β 3 s ) ] T = 1 r [ b cos ⁡ β 3 s + a sin ⁡ β 3 s b cos ⁡ β 3 s − a sin ⁡ β 3 s b ] E\sum =\frac{1}{r}\left[\begin{array}{ccc} 1 & 0 & a \\ 1 & 0 & -a \\ \cos \beta_{3 c} & \sin \beta_{3 c} & b \sin \beta_{3 c} \end{array}\right] [\frac{1}{sin(\beta_{3s})},0,\frac{1}{bcos(\beta_{3s})}]^T=\frac{1}{r}\left[\begin{array}{c} b\cos\beta_{3s}+a\sin\beta_{3s} \\ b\cos\beta_{3s}-a\sin\beta_{3s} \\ b \end{array}\right] E=r111cosβ3c00sinβ3caabsinβ3c[sin(β3s)1,0,bcos(β3s)1]T=r1bcosβ3s+asinβ3sbcosβ3sasinβ3sb

【考点5】wheel motorization
D,E矩阵共同组成F矩阵,F矩阵是判断标准。
在这里插入图片描述 [ φ ˙ 1 f φ ˙ 2 f φ ˙ 3 s ] = 1 r [ b cos ⁡ β 3 s + a sin ⁡ β 3 s b cos ⁡ β 3 s − a sin ⁡ β 3 s b ] \left[\begin{array}{c} \dot \varphi_{1f} \\ \dot \varphi_{2f} \\ \dot \varphi_{3s} \end{array}\right]=\frac{1}{r}\left[\begin{array}{c} b\cos\beta_{3s}+a\sin\beta_{3s} \\ b\cos\beta_{3s}-a\sin\beta_{3s} \\ b \end{array}\right] φ˙1fφ˙2fφ˙3s=r1bcosβ3s+asinβ3sbcosβ3sasinβ3sb
We have three cases to consider.

  1. motorizing φ 1 f \varphi_{1f} φ1f
  2. motorizing φ 2 f \varphi_{2f} φ2f
  3. motorizing φ 3 s \varphi_{3s} φ3s

[ β ˙ 3 s φ ˙ 1 f ] = [ 0 1 b r cos ⁡ β 3 s + a r sin ⁡ β 3 s 0 ] [ u s u m ] \left[\begin{array}{c} \dot \beta_{3s} \\ \dot{\varphi}_{1f} \end{array}\right]=\left[\begin{array}{cc} 0 & 1 \\ \frac{b}{r}\cos\beta_{3s}+\frac{a}{r}\sin\beta_{3s} &0 \end{array}\right]\left[\begin{array}{c} u_{s} \\ u_{m} \end{array}\right] [β˙3sφ˙1f]=[0rbcosβ3s+rasinβ3s10][usum]

[ β ˙ 3 s φ ˙ 2 f ] = [ 0 1 b r cos ⁡ β 3 s − a r sin ⁡ β 3 s 0 ] [ u s u m ] \left[\begin{array}{c} \dot \beta_{3s} \\ \dot{\varphi}_{2f} \end{array}\right]=\left[\begin{array}{cc} 0 & 1 \\ \frac{b}{r}\cos\beta_{3s}-\frac{a}{r}\sin\beta_{3s} &0 \end{array}\right]\left[\begin{array}{c} u_{s} \\ u_{m} \end{array}\right] [β˙3sφ˙2f]=[0rbcosβ3srasinβ3s10][usum]

[ β ˙ 3 s φ ˙ 3 s ] = [ 0 1 1 r b 0 ] [ u s u m ] \left[\begin{array}{c} \dot \beta_{3s} \\ \dot{\varphi}_{3s} \end{array}\right]=\left[\begin{array}{cc} 0 & 1 \\ \frac{1}{r}b&0 \end{array}\right]\left[\begin{array}{c} u_{s} \\ u_{m} \end{array}\right] [β˙3sφ˙3s]=[0r1b10][usum]

这里有一个明显的错误,我们在考虑motoring的时候不用把 β s \beta_s βs考虑进去。

Interpret what happens at the singularity using the ICR and blocking joints selectively.

【考点6】Singularity
第一,二种情况的奇异性分析是类似的,当我们把可旋转轮子锁定,单纯旋转固定轮子时,我们其实是无法让小车围绕ICR旋转的,相当于我们丢失了一个自由度。
在这里插入图片描述第三种情况由于没有半径无穷大的轮子,其实奇异情况是不存在的。之后到底什么才是好的驱动方式,交给以后生活中的实践吧(

今日写文背景音乐《时代号子》毕竟是劳动节

力量攥在手,梦想在前头
筑路修桥盖高楼,咱们天下走
汗也不白流,累也不白受
实干才能出成就,谁也别吹牛
成功一杯酒,亲人暖胸口
不悔青春有追求,日子有奔头
咱们挽起袖,大步朝前走
奋斗才会有幸福,劳动最风流
成功一杯酒,亲人暖胸口
不悔青春有追求,日子有奔头
咱们挽起袖,大步朝前走
奋斗才会有幸福,劳动最风流
奋斗才会有幸福,劳动最风流

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

肥鼠路易

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值