【论文笔记】SEED: A Simple and Effective 3D DETR in Point Clouds

原文链接:https://arxiv.org/abs/2407.10749

简介:基于DETR的3D点云检测器难以达到较高的性能,这可能有两个原因:(1)由于点云的稀疏性和分布不均匀,获取合适的物体查询较为困难;(2)利用点云的几何结构进行查询交互还未被充分探索。本文提出SEED,包括两步查询选择(DQS)模块和可变形网格注意力(DGA)模块。DQS首先保留大量查询以保证高召回率,并通过估计质量分数选择高质量查询。DGA则将参考边界框均匀分割为网格,使用预测偏移量实现灵活的感受野,以使模型关注相关区域并捕捉有信息的特征。实验表明,本文方法在Waymo和nuScenes数据集上均能达到sota水平。

0. 方法概述

在这里插入图片描述
本文使用基于体素的主干提取3D体素特征,然后转化为BEV特征,并加入位置编码,拉直为序列。随后,使用DQS进行由粗到细的高质量查询获取;并使用SEED解码层,利用DGA实现查询与BEV特征的交互。

1. 两步查询选择模块

在这里插入图片描述
DQS包括前景查询选择和质量查询选择。

前景查询选择:使用二元分类器(掩膜预测器)区分BEV的前景和背景,同时为BEV特征加入位置编码,拉直为BEV查询序列 F b e v ∈ R H W × C F_{bev}\in\mathbb R^{HW\times C} FbevRHW×C。然后,选择比例为 r r r的分数最高的特征作为粗糙查询。分数 S b e v S_{bev} Sbev来自掩膜预测器,以保留尽可能多的前景查询。该步骤可记为:
Q c = T o p N c ( F b e v , S b e v ) Q_c=Top_{N_c}(F_{bev},S_{bev}) Qc=TopNc(Fbev,Sbev)

其中 N c = H W r N_c=HWr Nc=HWr为粗糙查询数, T o p N ( x , y ) Top_N(x,y) TopN(x,y)表示根据 y y y x x x中取出前 N N N个查询。

随后,输入SEED解码器获取查询与BEV查询序列的特征交互,得到增强查询 Q c ′ Q'_c Qc
Q c ′ = D e c o d e r ( Q c , F b e v ) Q'_c=Decoder(Q_c,F_{bev})

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

byzy

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值