原文链接:https://arxiv.org/abs/2407.10749
简介:基于DETR的3D点云检测器难以达到较高的性能,这可能有两个原因:(1)由于点云的稀疏性和分布不均匀,获取合适的物体查询较为困难;(2)利用点云的几何结构进行查询交互还未被充分探索。本文提出SEED,包括两步查询选择(DQS)模块和可变形网格注意力(DGA)模块。DQS首先保留大量查询以保证高召回率,并通过估计质量分数选择高质量查询。DGA则将参考边界框均匀分割为网格,使用预测偏移量实现灵活的感受野,以使模型关注相关区域并捕捉有信息的特征。实验表明,本文方法在Waymo和nuScenes数据集上均能达到sota水平。
0. 方法概述
本文使用基于体素的主干提取3D体素特征,然后转化为BEV特征,并加入位置编码,拉直为序列。随后,使用DQS进行由粗到细的高质量查询获取;并使用SEED解码层,利用DGA实现查询与BEV特征的交互。
1. 两步查询选择模块
DQS包括前景查询选择和质量查询选择。
前景查询选择:使用二元分类器(掩膜预测器)区分BEV的前景和背景,同时为BEV特征加入位置编码,拉直为BEV查询序列 F b e v ∈ R H W × C F_{bev}\in\mathbb R^{HW\times C} Fbev∈RHW×C。然后,选择比例为 r r r的分数最高的特征作为粗糙查询。分数 S b e v S_{bev} Sbev来自掩膜预测器,以保留尽可能多的前景查询。该步骤可记为:
Q c = T o p N c ( F b e v , S b e v ) Q_c=Top_{N_c}(F_{bev},S_{bev}) Qc=TopNc(Fbev,Sbev)
其中 N c = H W r N_c=HWr Nc=HWr为粗糙查询数, T o p N ( x , y ) Top_N(x,y) TopN(x,y)表示根据 y y y从 x x x中取出前 N N N个查询。
随后,输入SEED解码器获取查询与BEV查询序列的特征交互,得到增强查询 Q c ′ Q'_c Qc′:
Q c ′ = D e c o d e r ( Q c , F b e v ) Q'_c=Decoder(Q_c,F_{bev})