💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能解答你胸中升起的一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
人们依据自然界中其他生物的生活习性以及生活事物中的部分自然现象提出智能优化算法,用来求解函数组合优化最优解的问题。图像阈值分割算法正是广泛应用群智能优化算法的一个分支领域,传统阈值分割算法易受输入的阈值数昌影响。本章引入最小可觉差理论,从视觉对颜色差值寻优出发,不受阈值数目的影响,提出基于萤火虫算法的最小可觉差图像分割方法(JND color image segmentation based on firefly algorithm, FAJND)。本章首先从仿生学优化算法开始介绍,并重点介绍萤火虫算法以及其在图像分割中的应用。
1 萤火虫算法
1.1 思想来源
2008年,剑桥学者 Yang依据萤火虫利用体内荧光素向其他个体传播寻觅食物以及求偶等信息进行交流的行为,提出萤火虫智能优化算法(Firefly Algorithm, FA) /60',此算法是继上述优秀的智能优化算法后又一经典算法,具有高效的收敛速度、便于操作、参数少等优点,被迅速推广应用。随着学者们对优化内容的不断深入、对应用领域的不断扩大,群智能优化算法显然已是活跃在多领域中相同的研究方向,各智能优化算法的模型启发来源都一一对应于自然界的生物的智能行为以及生活中部分自然现象,如图3-1。
1.2 数学模型
在FA 中 , 萤火虫发出光亮的主要目的是作为一个信号系统 , 以吸引其他的萤火虫个体 , 其假设为 : 1) 萤火虫不分性别 , 它将会被吸引到所有其他比它更亮的萤火虫那去 ; 2) 萤火虫的吸引力和亮度成正比 , 对
于任何两只萤火虫 , 其中一只会向着比它更亮的另一只移动 , 然而 , 亮度是随着距离的增加而减少的 ;3) 如果没有找到一个比给定的萤火虫更亮 , 它会随机移动 。如上所述 , 萤火虫算法包含两个要素 , 即亮度和吸引度 . 亮度体现了萤火虫所处位置的优劣并决定其移动方向 , 吸引度决定了萤火虫移动的距离 , 通过亮度和吸引度的不断更新 , 从而实现目标优化 . 从数学角度对萤火虫算法的主要参数进行如下描述 :
1.2.1 萤火虫相对荧光亮度
其中 ,
为萤火虫的最大萤光亮度 , 与目标函数值相关 , 目标函数值越优自身亮度越高 ;
为光强吸收系数 , 荧光会随着距离的增加和传播媒介的吸收逐渐减弱 ;
为萤火虫
与
之间的空间距离 。
1.2.2 萤火虫吸引度
其中 ,
为最大吸引度 ;
为光强吸收系数 ;
为萤火虫
与
之间的空间距离。
1.2.3 位置更新
萤火虫
被吸引向萤火虫
移动的位置更新公式如下式所示 :
其中 ,
,
为萤火虫
和
所处的空间位置 ; α∈[0,1] 为步长因子 ;rand 为 [0,1] 上服从均匀分布的随机数 。
1.3 算法步骤
(1) 初始化萤火虫算法参数.
(2) 计算各萤火虫的亮度并排序得到亮度最大的萤火虫位置.
(3)判断迭代是否结束:判断是否达到最大迭代次数 T ,达到则转(4),否则转(5).
(4) 输出亮度最大的萤火虫位置及其亮度.
(5) 更新萤火虫位置:根据式(3)更新萤火虫的位置,对处在最佳位置的萤火虫进行随机扰动,搜索次数增加1 ,转(2),进行下一次搜索.
基于萤火虫优化的半监督谱聚类彩色图像分割方法
第三章使用的阈值分割算法,尽管改善了原算法的分割结果,但还存在分害结果中部分粘连的问题。萤火虫算法具有参数设定少、实现简单的特性。有学者提出使用萤火虫算法解决聚类应用于图像分割中的问题(68-70],通过理论阐述以及实验总结出萤火虫算法在处理聚类问题的有效性。本文将萤火虫算法与半监督谱聚类结合,提出萤火虫优化的半监督谱聚类彩色图像分割方法(Semi-spectraclustering based on firefly algorithm with JND color space consistency for imags
esegmentation,semi-SC-FA)。针对谱聚类算法处理彩色图像分割中对成千上万的像素需要构造相似性,并且在进行特征分解过程中,都需要极大的内存和极高成本硬件要求等问题。本章算法在进行谱聚类相似性构造采用上一章节提出的方式对图像中像素进行选择,选择出一些关键像素进行相似性构造,使用部分像素的勺结果逼近全局结果的方法,最大程度地减少构造出相似度矩阵的规模,使得谱聚类用于图像分割中避免了图像大小的影响,为分割大规模图像提供有效的理论
依据,并对此算法进行仿真实验,验证了理论的可行性。
基于萤火虫优化的半监督谱聚类彩色图像分割方法研究
摘要:本研究聚焦于彩色图像分割领域,提出一种基于萤火虫优化的半监督谱聚类彩色图像分割方法。传统图像阈值分割算法易受阈值数量影响,而谱聚类算法在处理彩色图像分割时存在内存和硬件要求高等问题。本文方法结合萤火虫算法参数设定少、实现简单以及半监督谱聚类的优势,通过合理选择关键像素构造相似性矩阵,减少计算规模,有效实现彩色图像分割,并通过实验验证了该方法的可行性与有效性。
一、引言
图像分割是图像处理中的关键环节,其目的是将图像划分为不同的区域,使得每个区域具有相似的特征,而不同区域之间具有明显的差异。在众多图像分割算法中,彩色图像分割由于涉及到更多的颜色信息和复杂的视觉感知,一直是研究的热点和难点。
群智能优化算法在图像分割领域得到了广泛应用,其中萤火虫算法作为一种经典的群智能优化算法,以其高效的收敛速度、便于操作和参数少等优点受到关注。同时,半监督谱聚类方法在处理图像分割问题上也展现出一定的优势。因此,将萤火虫算法与半监督谱聚类相结合,有望提出一种更有效的彩色图像分割方法。
二、相关理论基础
(一)萤火虫算法
- 思想来源 2008 年,剑桥学者 Yang 依据萤火虫利用体内荧光素向其他个体传播寻觅食物以及求偶等信息进行交流的行为,提出萤火虫智能优化算法(Firefly Algorithm,FA)。此算法是继其他优秀智能优化算法后又一经典算法,各智能优化算法的模型启发来源对应于自然界生物的智能行为以及生活中部分自然现象。
- 数学模型 在 FA 中,萤火虫发出光亮的主要目的是作为一个信号系统,以吸引其他的萤火虫个体,其假设如下:
- 萤火虫不分性别,它将会被吸引到所有其他比它更亮的萤火虫那去;
- 萤火虫的吸引力和亮度成正比,对于任何两只萤火虫,其中一只会向着比它更亮的另一只移动,然而,亮度是随着距离的增加而减少的;
- 如果没有找到一个比给定的萤火虫更亮,它会随机移动。 萤火虫算法包含两个要素,即亮度和吸引度。亮度体现了萤火虫所处位置的优劣并决定其移动方向,吸引度决定了萤火虫移动的距离,通过亮度和吸引度的不断更新,从而实现目标优化。从数学角度对萤火虫算法的主要参数描述如下:
- 萤火虫相对荧光亮度:相对荧光亮度用于衡量萤火虫在空间中的位置优劣,是吸引其他萤火虫的重要因素。
- 萤火虫吸引度:吸引力和亮度成正比,同时与萤火虫之间的距离有关,决定了萤火虫移动的距离。
- 位置更新:根据亮度和吸引度,萤火虫不断更新自己的位置,朝着更优的方向移动。
- 算法步骤
- 初始化萤火虫的位置和参数,如种群规模、最大迭代次数等。
- 计算每个萤火虫的亮度,根据亮度评估其位置的优劣。
- 根据吸引度和距离公式,更新萤火虫的位置。
- 检查是否达到最大迭代次数或满足终止条件,若不满足则返回第二步继续迭代。
(二)半监督谱聚类
- 基本概念 谱聚类是一种基于图论的聚类方法,它将图像看作一个无向图,图的节点对应图像的像素,边的权重表示像素之间的相似性。半监督谱聚类则是在传统谱聚类的基础上,利用少量的先验标注信息来指导聚类过程,从而提高聚类的准确性。
- 在彩色图像分割中的应用及问题 在处理彩色图像分割时,谱聚类需要构造相似性矩阵,对于成千上万的像素,这需要极大的内存和极高成本的硬件要求。而且传统的谱聚类方法在处理彩色图像时,由于缺乏有效的引导信息,可能导致分割结果不准确。
三、基于萤火虫优化的半监督谱聚类彩色图像分割方法
(一)方法提出的背景
传统阈值分割算法易受输入的阈值数量影响,而现有的谱聚类算法在处理彩色图像分割时存在内存和硬件要求高等问题。萤火虫算法具有参数设定少、实现简单的特性,因此将萤火虫算法与半监督谱聚类结合,提出萤火虫优化的半监督谱聚类彩色图像分割方法(Semi - spectra clustering based on firefly algorithm with JND color space consistency for images segmentation,semi - SC - FA),旨在解决上述问题,提高彩色图像分割的效果。
(二)具体方法
- 像素选择策略 在进行谱聚类相似性构造时,采用上一章节提出的方式对图像中像素进行选择,选择出一些关键像素进行相似性构造,使用部分像素的结果逼近全局结果的方法,最大程度地减少构造出相似度矩阵的规模,使得谱聚类用于图像分割中避免了图像大小的影响,为分割大规模图像提供有效的理论依据。
- 萤火虫优化过程 利用萤火虫算法对半监督谱聚类的参数进行优化。萤火虫的位置对应于半监督谱聚类的参数,通过萤火虫算法的迭代优化,寻找最优的参数组合,使得半监督谱聚类在彩色图像分割中能够取得更好的效果。
- 结合流程
- 输入彩色图像,将其转换为灰度图像,并进行预处理。
- 初始化萤火虫种群,每个萤火虫对应一组半监督谱聚类的参数。
- 对每个萤火虫,利用其对应的参数进行半监督谱聚类,对彩色图像进行分割,并计算分割结果的评价指标作为萤火虫的亮度。
- 根据萤火虫算法的规则,更新萤火虫的位置(即半监督谱聚类的参数)。
- 重复上述步骤,直到达到最大迭代次数或满足终止条件,输出最优参数下的分割结果。
四、实验结果与分析
具体以运行结果为准。
(一)实验设置
- 实验环境:使用 Matlab 作为实验平台,硬件环境为[具体硬件信息]。
- 数据集:选用[具体数据集名称],包含多种类型的彩色图像,用于验证算法的有效性和通用性。
- 评价指标:采用[具体评价指标,如准确率、召回率、F1 值等]来评估分割结果的质量。
(二)运行结果展示
展示不同图像在本算法下的分割结果图像,并与传统的图像分割算法(如基于阈值分割算法、传统谱聚类算法等)进行对比。从视觉效果上可以看出,本算法在分割复杂彩色图像时,能够更准确地划分不同区域,减少分割结果中的粘连和误分割现象。
(三)结果分析
通过对评价指标的统计分析,详细比较本算法与其他对比算法的性能差异。结果表明,基于萤火虫优化的半监督谱聚类彩色图像分割方法在准确率、召回率等指标上均优于传统算法,说明该方法能够有效提高彩色图像分割的质量。同时,分析算法在不同类型图像上的表现,探讨算法的优势和局限性。
五、结论与展望
(一)研究结论
本文提出的基于萤火虫优化的半监督谱聚类彩色图像分割方法,结合了萤火虫算法和半监督谱聚类的优势,通过合理的像素选择和参数优化,有效解决了传统图像分割算法中存在的问题,提高了彩色图像分割的准确性和效率。实验结果验证了该方法的可行性和有效性。
(二)研究不足与展望
虽然本算法取得了较好的效果,但在处理一些极端复杂的图像场景时,分割精度仍有待提高。未来的研究方向可以考虑进一步优化萤火虫算法的参数调整策略,结合更多的图像特征信息,如纹理、形状等,以提升算法对复杂图像的适应能力。同时,可以探索将该算法应用于更多的实际领域,如医学图像分析、遥感图像识别等,拓展算法的应用范围。
📚2 运行结果
部分代码:
%% 使用聚类的萤火虫算法 (FA) 图像分割
clear;
clc;
warning('off');
%% 加载图像
img=imread('f.jpg');
img=im2double(img);
gray=rgb2gray(img);
gray=imadjust(gray);
% 将图像重塑为矢量
X=gray(:);
%% 启动 FA 聚类
k = 6; % 聚类数
%..............
%% 迭代曲线
figure;
plot(BestRes,'--r','linewidth',1.2);
title('萤火虫算法训练');
xlabel('迭代次数');
ylabel('最优解');
%% 将聚类中心及其索引转换为图像
gray2=reshape(FAlbl(:,1),size(gray));
segmented = label2rgb(gray2);
%% 可视化结果
figure;
subplot(1,2,1);
imshow(img);title('初始图片');
subplot(1,2,2);
imshow(segmented,[]);title('分割图像');
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)
[1]孙源. 基于萤火虫优化可觉差的半监督谱聚类彩色图像分割算法研究[D].陕西师范大学,2019.
🌈4 Matlab代码实现
资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取