5. livox hap 的bag文件保存、bag转为pcd文件(python代码实现)

一、连接激光雷达

  在文件夹/livox/src/livox_ros_driver2/下面写open.py文件,具体代码如下:

import subprocess


process2 = subprocess.Popen("source ../../devel/setup.sh",shell=True,stdout=subprocess.PIPE)

process3 = subprocess.Popen("roslaunch livox_ros_driver2 livox_lidar_rviz_HAP.launch",shell=True,stdout=subprocess.PIPE)

  然后在该文件夹下打开该文件:

python open.py

二、bag文件保存

       在用python保存bag文件前先要用前一章的方法连接livox,并且打开roscore,再在终端创建一个保存bag文件的文件夹,比如我创建的路径是/livox/src/saves/,则在saves文件夹下写一个保存bag文件的py文件,代码实现如下:

import subprocess

#--duration=0.3表示一个bag文件包数据的时间长度是0.3秒,可以根据自己的需要修改这个数据

process2 = subprocess.Popen("rosbag record --duration=0.3 -a", shell=True,stdout=subprocess.PIPE)

       注意:以上代码只是存取一个bag文件,要自动的循环存取多个bag文件,则需要while循环。  这里不做循环,后面和bag转换文件的代码一起循环。

三、bag文件转换为pcd文件

  在/livox/src/saves/文件夹下写一个bag_pcd.py文件,代码如下:

import subprocess

#***.bag:表示将要转换的为pcd文件的bag文件名称

process2 = subprocess.Popen("rosrun pcl_ros bag_to_pcd ***.bag /livox/lidar pcd", shell=True,stdout=subprocess.PIPE)

四、查看pcd文件

import subprocess

#xxx.pcd:表示将要查看的pcd文件名称

process2 = subprocess.Popen("pcl_viewer xxx.pcd", shell=True,stdout=subprocess.PIPE)

  注意:pcd文件的三维坐标转换为相机的二维坐标的手眼标定模型可以参照1.激光雷达与相机的融合标定(附python代码)_YANQ662的博客-CSDN博客,也是python代 码。

五、打开rk3588的相机

  1.这里用了终端代码,如果用cv打开相机,需要重新写代码

import subprocess

#/dev/video74:表示相机的路径,该路径需要大家根据自己设备的实际路径修改

process2 = subprocess.Popen("cheese /dev/video61", shell=True,stdout=subprocess.PIPE)

  注意:查看相机路径可以参考博文:rk3588 利用opencv打开摄像头(MIPI或USB)-CSDN博客

2.用cv2打开rk3588的相机

# coding:utf-8

import cv2

#/dev/video42:表示摄像头的路径
cap = cv2.VideoCapture("/dev/video42")#"/dev/video42"

index = 1

while (cap.isOpened()):
    
    print(cap.isOpened())

    ret, frame = cap.read()
    print(ret)

    cv2.imshow("src_image", frame)

    

    k = cv2.waitKey(1) & 0xFF

    if k == ord('s'):

        cv2.imwrite("./" + str(index) + ".jpg", frame)

        index += 1

    elif k == ord('q'):

        break

cap.release()

cv2.destroyAllWindows()

### Livox HAP SLAM 的相关信息 Livox HAP 是一种高性能激光雷达设备,广泛应用于机器人导航、自动驾驶以及三维建图等领域。SLAM(Simultaneous Localization and Mapping),即同步定位与地图构建技术,在这些领域中起着至关重要的作用。 以下是关于如何设置和运行 Livox HAP SLAM 的一些关键信息: #### 配置环境 为了启动 Livox HAP 并将其用于 SLAM 应用程序,通常需要配置 ROS(Robot Operating System)。通过以下命令可以初始化并加载必要的驱动程序和可视化工具[^1]: ```bash source ../../devel/setup.sh roslaunch livox_ros_driver2 livox_lidar_rviz_HAP.launch ``` 此命令的作用是加载 Livox HAP 设备的驱动程序,并在 RViz 中显示其数据流。RViz 是 ROS 提供的一个强大的 3D 可视化工具,能够帮助开发者实时监控传感器的数据采集情况。 对于更高级的功能需求,比如连接到特定的 SLAM 节点或者调整参数,可以通过另一个 launch 文件实现[^2]: ```bash source ../../devel/setup.sh roslaunch livox_ros_driver2 rviz_HAP.launch ``` 上述命令不仅会启动 Lidar 数据传输服务,还会自动打开预设好的 RViz 界面以便于调试和验证硬件状态。 #### 使用 SLAM 技术 要利用 Livox HAP 实现完整的 SLAM 功能,则需进一步集成专门设计的支持该型号 LiDAR 的 SLAM 软件包。常见的开源项目包括 LOAM (Laser Odometry And Mapping),Cartographer 和 LeGO-LOAM 等。它们均提供了针对不同品牌LiDARS优化后的算法版本,因此可能需要额外安装对应的依赖项并与现有系统兼容测试。 例如,如果采用 Cartographer 进行二维或三维映射操作,那么应该按照官方文档指示完成相应节点间的订阅发布关系定义工作;同时注意修改默认参数以适配具体使用的模型规格特性。 #### 示例代码片段 下面展示了一个简单的 Python 脚本例子来演示如何监听来自 Livox HAP 的主题消息: ```python import rospy from sensor_msgs.msg import PointCloud2 def callback(data): # Process the incoming point cloud data here. pass if __name__ == '__main__': rospy.init_node('livox_pointcloud_subscriber', anonymous=True) sub = rospy.Subscriber('/livox/lidar', PointCloud2, callback) rospy.spin() ``` 这段脚本创建了一个名为 `livox_pointcloud_subscriber` 的新节点,并订阅了由 Livox 发布的主题 `/livox/lidar` 上的点云数据。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值