角速度
设参考系 2 E ⃗ {}^2\vec{\mathcal{E} } 2E相对于参考系 1 E ⃗ {}^1\vec{\mathcal{E} } 1E的旋转速度记为 ω ⃗ 21 \vec{\bm{\omega}}_{21} ω21, 1 E ⃗ {}^1\vec{\mathcal{E} } 1E相对于 2 E ⃗ {}^2\vec{\mathcal{E} } 2E的旋转速度记为 ω ⃗ 12 = − ω ⃗ 21 \vec{\bm{\omega}}_{12}=-\vec{\bm{\omega}}_{21} ω12=−ω21。
ω ⃗ 21 \vec{\bm{\omega}}_{21} ω21的模 ∣ ω ⃗ 21 ∣ = ( ω ⃗ 21 ⋅ ω ⃗ 21 ) |\vec{\bm{\omega}}_{21}|=\sqrt{(\vec{\bm{\omega}}_{21}\cdot\vec{\bm{\omega}}_{21})} ∣ω21∣=(ω21⋅ω21)即为旋转速率。 ω ⃗ 21 \vec{\bm{\omega}}_{21} ω21的旋转方向就是瞬时旋转轴,也就是 ω ⃗ 21 \vec{\bm{\omega}}_{21} ω21方向上的单位向量,记为 ∣ ω ⃗ 21 ∣ − 1 ω ⃗ 21 |\vec{\bm{\omega}}_{21}|^{-1}\vec{\bm{\omega}}_{21} ∣ω21∣−1ω21。
处在参考系 2 E ⃗ {}^2\vec{\mathcal{E} } 2E 和 1 E ⃗ {}^1\vec{\mathcal{E} } 1E的观测者所看到的运动是不一样的,这是由它们自己的运动造成的。我们记处在 1 E ⃗ {}^1\vec{\mathcal{E} } 1E的观察者所看到的向量时间导数为 ( ⋅ ) ∙ (\cdot)^{\bullet} (⋅)∙,处在 2 E ⃗ {}^2\vec{\mathcal{E} } 2E的观测者看到的运动的时间导数为 ( ⋅ ) ∘ (\cdot)^{\circ} (⋅)∘。在这个定义下,有:
1 E ⃗ ∙ = 0 ⃗ , 2 E ⃗ ∘ = 0 ⃗ {}^1\vec{\mathcal{E} }^{\bullet}=\vec{0} ,\quad {}^2\vec{\mathcal{E} }^{\circ}=\vec{0} 1E∙=0,2E∘=0
可以看出:
2 e ⃗ 1 ∙ = ω ⃗ 21 × 2 e ⃗ 1 , 2 e ⃗ 2 ∙ = ω ⃗ 21 × 2 e ⃗ 2 , 2 e ⃗ 3 ∙ = ω ⃗ 21 × 2 e ⃗ 3 ⟹ [ 2 e ⃗ 1 ∙ 2 e ⃗ 2 ∙ 2 e ⃗ 3 ∙ ] = ω ⃗ 21 × [ 2 e ⃗ 1 2 e ⃗ 2 2 e ⃗ 3 ] ⟹ 2 E ⃗ ∙ = ω ⃗ 21 × 2 E ⃗ \begin{aligned} &{}^2\vec{e}_1^{\bullet}=\vec{\bm{\omega}}_{21}\times {}^2\vec{e}_1,\quad {}^2\vec{e}_2^{\bullet}=\vec{\bm{\omega}}_{21}\times {}^2\vec{e}_2,\quad {}^2\vec{e}_3^{\bullet}=\vec{\bm{\omega}}_{21}\times {}^2\vec{e}_3 \\ &\implies \begin{bmatrix}{}^2\vec{e}_1^{\bullet}&{}^2\vec{e}_2^{\bullet}&{}^2\vec{e}_3^{\bullet}\end{bmatrix}=\vec{\bm{\omega}}_{21}\times \begin{bmatrix}{}^2\vec{e}_1&{}^2\vec{e}_2&{}^2\vec{e}_3\end{bmatrix}\\ &\implies {}^2\vec{\mathcal{E} }^{\bullet}=\vec{\bm{\omega}}_{21}\times {}^2\vec{\mathcal{E} } \end{aligned} 2e1∙=ω21×2e1,2e2∙=ω21×2e2,2e3∙=ω21×2e3⟹[2e1∙2e2∙2e3∙]=ω21×[2e12e22e3]⟹2E∙=ω21×2E
任意向量在两个坐标系下的表示为
r ⃗ = 1 E ⃗ r 1 = 2 E ⃗ r 2 \vec{\bm{r}}={}^1\vec{\mathcal{E} }\bm{r}_{1}={}^2\vec{\mathcal{E}}\bm{r}_{2} r=1Er1=2Er2
按照求导法则
Δ r ⃗ = [ 1 E ⃗ + Δ ( 1 E ⃗ ) ] ( r 1 + Δ r 1 ) − 1 E ⃗ r 1 = Δ ( 1 E ⃗ ) r 1 + 1 E ⃗ Δ r 1 + Δ ( 1 E ⃗ ) Δ r 1 二阶小量 lim Δ t → 0 [ Δ r ⃗ Δ t = Δ ( 1 E ⃗ ) Δ t r 1 + 1 E ⃗ Δ r 1 Δ t ] \Delta\vec{\bm{r}}=[{}^1\vec{\mathcal{E} }+\Delta({}^1\vec{\mathcal{E} })](\bm{r}_1+\Delta \bm{r}_{1})-{}^1\vec{\mathcal{E} }\bm{r}_{1}=\Delta({}^1\vec{\mathcal{E} })\bm{r}_1+{}^1\vec{\mathcal{E}}\Delta \bm{r}_1 +\underset{二阶小量}{\Delta({}^1\vec{\mathcal{E} })\Delta \bm{r}_1}\\ \lim_{\Delta t\to0}\left[\dfrac{\Delta\vec{\bm{r}}}{\Delta t}=\dfrac{\Delta({}^1\vec{\mathcal{E} })}{\Delta t}\bm{r}_1+{}^1\vec{\mathcal{E}}\dfrac{\Delta \bm{r}_1}{\Delta t} \right] Δr=[1E+Δ(1E)](r1+Δr1)−1Er1=Δ(1E)r1+1EΔr1+二阶小量Δ(1E)Δr1Δt→0lim[ΔtΔr=ΔtΔ(1E)r1+1EΔtΔr1]
在 1 E ⃗ {}^1\vec{\mathcal{E} } 1E坐标系下看到运动的时间导数为:
r ⃗ ∙ = 1 E ⃗ r 1 ∙ + 1 E ⃗ ∙ r 1 = 1 E ⃗ r ˙ 1 \vec{\bm{r}}^{\bullet}= {}^1{\vec{\mathcal{E} }} \bm{r}_{1}^{\bullet}+ {^1\vec{\mathcal{E}}^{\bullet}}\bm{r} _{1}={^1\vec{\mathcal{E}}}\dot{\bm{r}}_1 r∙=1Er1∙+1E∙r1=1Er˙1
同理可得在 2 E ⃗ {}^2\vec{\mathcal{E} } 2E坐标系下看到运动的时间导数为:
r ⃗ ∘ = 2 E ⃗ r 2 ∘ + 2 E ⃗ ∘ r 2 = 2 E ⃗ r ˙ 2 \vec{\bm{r}}^{\circ}= {^2\vec{\mathcal{E} }} \bm{r}_{2}^{\circ}+ {^2\vec{\mathcal{E}}^{\circ}}\bm{r} _{2}={^2\vec{\mathcal{E}}}\dot{\bm{r}}_2 r∘=2Er2∘+2E∘r2=2Er˙2
注意对于不是向量的量, ( ⋅ ) ∙ = ( ⋅ ) ∘ (\cdot)^{\bullet}=(\cdot)^{\circ} (⋅)∙=(⋅)∘,也就是 r ∙ = r ∘ = r ˙ \bm{r}^{\bullet}=\bm{r}^{\circ}=\dot{\bm{r}} r∙=r∘=