SLAM中的运动学

本文深入探讨SLAM(Simultaneous Localization and Mapping)中的运动学,包括角速度的概念、加速度的计算以及角速度与旋转矩阵的关系。通过角速度的传递、李群插值和理想惯性测量单元(IMU)模型的分析,阐述了如何理解和处理移动机器人在不同参考系下的运动状态。
摘要由CSDN通过智能技术生成

角速度

在这里插入图片描述

设参考系 2 E ⃗ {}^2\vec{\mathcal{E} } 2E 相对于参考系 1 E ⃗ {}^1\vec{\mathcal{E} } 1E 的旋转速度记为 ω ⃗ 21 \vec{\bm{\omega}}_{21} ω 21 1 E ⃗ {}^1\vec{\mathcal{E} } 1E 相对于 2 E ⃗ {}^2\vec{\mathcal{E} } 2E 的旋转速度记为 ω ⃗ 12 = − ω ⃗ 21 \vec{\bm{\omega}}_{12}=-\vec{\bm{\omega}}_{21} ω 12=ω 21
ω ⃗ 21 \vec{\bm{\omega}}_{21} ω 21的模 ∣ ω ⃗ 21 ∣ = ( ω ⃗ 21 ⋅ ω ⃗ 21 ) |\vec{\bm{\omega}}_{21}|=\sqrt{(\vec{\bm{\omega}}_{21}\cdot\vec{\bm{\omega}}_{21})} ω 21=(ω 21ω 21) 即为旋转速率。 ω ⃗ 21 \vec{\bm{\omega}}_{21} ω 21的旋转方向就是瞬时旋转轴,也就是 ω ⃗ 21 \vec{\bm{\omega}}_{21} ω 21方向上的单位向量,记为 ∣ ω ⃗ 21 ∣ − 1 ω ⃗ 21 |\vec{\bm{\omega}}_{21}|^{-1}\vec{\bm{\omega}}_{21} ω 211ω 21
处在参考系 2 E ⃗ {}^2\vec{\mathcal{E} } 2E 1 E ⃗ {}^1\vec{\mathcal{E} } 1E 的观测者所看到的运动是不一样的,这是由它们自己的运动造成的。我们记处在 1 E ⃗ {}^1\vec{\mathcal{E} } 1E 的观察者所看到的向量时间导数为 ( ⋅ ) ∙ (\cdot)^{\bullet} (),处在 2 E ⃗ {}^2\vec{\mathcal{E} } 2E 的观测者看到的运动的时间导数为 ( ⋅ ) ∘ (\cdot)^{\circ} ()。在这个定义下,有:
1 E ⃗ ∙ = 0 ⃗ , 2 E ⃗ ∘ = 0 ⃗ {}^1\vec{\mathcal{E} }^{\bullet}=\vec{0} ,\quad {}^2\vec{\mathcal{E} }^{\circ}=\vec{0} 1E =0 ,2E =0
可以看出:
2 e ⃗ 1 ∙ = ω ⃗ 21 × 2 e ⃗ 1 , 2 e ⃗ 2 ∙ = ω ⃗ 21 × 2 e ⃗ 2 , 2 e ⃗ 3 ∙ = ω ⃗ 21 × 2 e ⃗ 3    ⟹    [ 2 e ⃗ 1 ∙ 2 e ⃗ 2 ∙ 2 e ⃗ 3 ∙ ] = ω ⃗ 21 × [ 2 e ⃗ 1 2 e ⃗ 2 2 e ⃗ 3 ]    ⟹    2 E ⃗ ∙ = ω ⃗ 21 × 2 E ⃗ \begin{aligned} &{}^2\vec{e}_1^{\bullet}=\vec{\bm{\omega}}_{21}\times {}^2\vec{e}_1,\quad {}^2\vec{e}_2^{\bullet}=\vec{\bm{\omega}}_{21}\times {}^2\vec{e}_2,\quad {}^2\vec{e}_3^{\bullet}=\vec{\bm{\omega}}_{21}\times {}^2\vec{e}_3 \\ &\implies \begin{bmatrix}{}^2\vec{e}_1^{\bullet}&{}^2\vec{e}_2^{\bullet}&{}^2\vec{e}_3^{\bullet}\end{bmatrix}=\vec{\bm{\omega}}_{21}\times \begin{bmatrix}{}^2\vec{e}_1&{}^2\vec{e}_2&{}^2\vec{e}_3\end{bmatrix}\\ &\implies {}^2\vec{\mathcal{E} }^{\bullet}=\vec{\bm{\omega}}_{21}\times {}^2\vec{\mathcal{E} } \end{aligned} 2e 1=ω 21×2e 1,2e 2=ω 21×2e 2,2e 3=ω 21×2e 3[2e 12e 22e 3]=ω 21×[2e 12e 22e 3]2E =ω 21×2E
任意向量在两个坐标系下的表示为
r ⃗ = 1 E ⃗ r 1 = 2 E ⃗ r 2 \vec{\bm{r}}={}^1\vec{\mathcal{E} }\bm{r}_{1}={}^2\vec{\mathcal{E}}\bm{r}_{2} r =1E r1=2E r2
按照求导法则
Δ r ⃗ = [ 1 E ⃗ + Δ ( 1 E ⃗ ) ] ( r 1 + Δ r 1 ) − 1 E ⃗ r 1 = Δ ( 1 E ⃗ ) r 1 + 1 E ⃗ Δ r 1 + Δ ( 1 E ⃗ ) Δ r 1 二阶小量 lim ⁡ Δ t → 0 [ Δ r ⃗ Δ t = Δ ( 1 E ⃗ ) Δ t r 1 + 1 E ⃗ Δ r 1 Δ t ] \Delta\vec{\bm{r}}=[{}^1\vec{\mathcal{E} }+\Delta({}^1\vec{\mathcal{E} })](\bm{r}_1+\Delta \bm{r}_{1})-{}^1\vec{\mathcal{E} }\bm{r}_{1}=\Delta({}^1\vec{\mathcal{E} })\bm{r}_1+{}^1\vec{\mathcal{E}}\Delta \bm{r}_1 +\underset{二阶小量}{\Delta({}^1\vec{\mathcal{E} })\Delta \bm{r}_1}\\ \lim_{\Delta t\to0}\left[\dfrac{\Delta\vec{\bm{r}}}{\Delta t}=\dfrac{\Delta({}^1\vec{\mathcal{E} })}{\Delta t}\bm{r}_1+{}^1\vec{\mathcal{E}}\dfrac{\Delta \bm{r}_1}{\Delta t} \right] Δr =[1E +Δ(1E )](r1+Δr1)1E r1=Δ(1E )r1+1E Δr1+二阶小量Δ(1E )Δr1Δt0lim[ΔtΔr =ΔtΔ(1E )r1+1E ΔtΔr1]
1 E ⃗ {}^1\vec{\mathcal{E} } 1E 坐标系下看到运动的时间导数为:
r ⃗ ∙ = 1 E ⃗ r 1 ∙ + 1 E ⃗ ∙ r 1 = 1 E ⃗ r ˙ 1 \vec{\bm{r}}^{\bullet}= {}^1{\vec{\mathcal{E} }} \bm{r}_{1}^{\bullet}+ {^1\vec{\mathcal{E}}^{\bullet}}\bm{r} _{1}={^1\vec{\mathcal{E}}}\dot{\bm{r}}_1 r =1E r1+1E r1=1E r˙1
同理可得在 2 E ⃗ {}^2\vec{\mathcal{E} } 2E 坐标系下看到运动的时间导数为:
r ⃗ ∘ = 2 E ⃗ r 2 ∘ + 2 E ⃗ ∘ r 2 = 2 E ⃗ r ˙ 2 \vec{\bm{r}}^{\circ}= {^2\vec{\mathcal{E} }} \bm{r}_{2}^{\circ}+ {^2\vec{\mathcal{E}}^{\circ}}\bm{r} _{2}={^2\vec{\mathcal{E}}}\dot{\bm{r}}_2 r =2E r2+2E r2=2E r˙2
注意对于不是向量的量, ( ⋅ ) ∙ = ( ⋅ ) ∘ (\cdot)^{\bullet}=(\cdot)^{\circ} ()=(),也就是 r ∙ = r ∘ = r ˙ \bm{r}^{\bullet}=\bm{r}^{\circ}=\dot{\bm{r}} r=r=

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Shilong Wang

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值