AI问答,将是患者接触医疗服务的主要方式

在过去的十几年中,搜索引擎(特别是百度)在医疗行业的地位举足轻重。患者常通过搜索引擎查询健康信息、了解疾病症状,进而找到合适的医疗服务提供者并预约就诊。

与非搜索用户相比,搜索引擎使医疗网站的访问量增加了两倍之多,而且使用移动设备搜索医疗服务的用户预约就诊的可能性更高。可见,搜索是连接患者与医疗服务的关键环节,路径越短转化率越高,当患者带着明确目的搜索时,有效的预约路径甚至能实现 100% 的转化。如今,小程序已成为患者访问网页、开启医疗服务之旅的主要途径。随着数字渠道成为寻找医疗服务的重要入口,如何触达患者变得更具挑战性。得益于谷歌直观的搜索结果匹配方式,医疗用户已习惯并期待清晰的搜索结果,这种方式能将患者需求与相关结果无缝对接。

传统搜索引擎的核心是关键词匹配技术(类似提示词),用户输入关键词后,搜索引擎依据词汇在网页内容中的频率和分布,运用复杂算法(如 PageRank)评估相关性并对搜索结果排序。在信息量较少的时期,这种方法能迅速从海量数据中筛选出与用户查询最相关的网页。

然而,随着互联网内容的爆炸式增长,搜索引擎也在不断进化以满足用户对精准、快速搜索结果的需求。搜索技术从最初的文本搜索发展到图片、语音、视频搜索,提高了搜索的便捷性和多样性。传统搜索引擎的处理流程大致为 “网络爬取 - 索引 - 处理 - 搜索 - 排名 - 展示”,这种线性机制导致搜索结果存在局限性。

一方面,基于关键词匹配获取结果的机制过于机械,在专业理论领域尤其容易导致准确性不足。另一方面,传统搜索引擎无法充分理解用户语境和确切需求,搜索结果相关性差,常是关键词甚至标题与正文的拼凑,与用户意图背离,极大地削弱了用户的个性化体验。同时,互联网信息量的剧增让传统搜索引擎在实时更新索引库方面面临挑战,搜索结果的实时性难以保证。而且,大量广告投放占据了用户的搜索时间,在医疗行业搜索中,面对患者的健康管理需求,传统搜索常常出现问题,查询结果不理想,效率低下。

搜索引擎虽能将海量信息快速呈现给用户,但传统搜索引擎缺乏个性化,依赖关键词匹配,无法深入理解患者的具体需求和症状,而服务的准确性和时效性对患者至关重要。

如今,患者与医疗服务提供者的互动方式发生了巨大变化,患者不再单纯依赖搜索引擎查找医生或诊所信息,而是逐渐向智能化、个性化的 AI 问答系统转移。这一转变不仅改变了患者的就医体验,也对医疗行业的运营模式、数据分析和技术架构提出了新要求。患者从传统检索平台转向利用短视频平台强大的搜索能力和可操作结果。因此,医疗行业需要重新审视搜索的角色,以便为患者提供更便捷的医疗服务访问途径,这就是 AI 问答。

以用户为中心提炼信息属性可加速优质搜索结果呈现。一方面,AI 搜索能更准确地提炼用户搜索意图,它可与用户多轮对话,引导用户提供更多信息,从而更精准地理解需求并给出符合期望的回答。AI 技术有助于搜索引擎更好地理解用户语义,支持个性化推荐、跨模态和跨语言检索、交互等功能,使搜索引擎更智能、更人性化。另一方面,在海量数据中提炼搜索结果。利用结构化知识图谱(如 Google 的知识图谱)和语义网技术,AI 搜索能在结果中呈现相关实体信息和关系,帮助用户快速获取答案。通过机器学习和深度学习模型,AI 能学习用户偏好和搜索行为,优化搜索算法,提高结果的相关性和准确性。

AI 搜索还具有主动回答的延伸属性,真正做到以患者为中心。它提供多模态搜索体验,不限于文字搜索,涵盖文本、图片、音视频等跨模态搜索,用户能以更自然的方式与搜索引擎交互,获取更全面的信息。AI 搜索不仅依赖单一查询,还能理解用户的上下文(如时间、地点、设备等),提供更相关的结果。此外,AI 搜索系统可通过机器学习依据用户反馈和行为模式自我优化,提高准确性和用户满意度。它颠覆了传统搜索的被动回答模式,表现为输入输出两端的主动。例如,用户搜索商业模式相关问题时,AI 会主动提供相关问题作为参考;回答问题后,还会延伸出追加问题,如 “在调整商业模式时,如何平衡短期和长期目标?” 通过交互式问答,用户能挖掘更多隐含信息。

未来,从传统搜索引擎向智能问答系统的转变是必然趋势。智能问答系统的核心优势在于能通过自然语言与用户互动,理解复杂语义和上下文,提供更精准、个性化的答案。AI 问答系统不仅展示信息,更能深入理解患者意图,提供实时反馈,依据患者症状、病史、偏好等推荐最合适的解决方案和本地医疗机构。

这种转变将显著改善患者体验,为医疗机构提供更高效、精准的运营模式。**不过,在医院场景中,我并不看好 AI 问答的应用。**就医时,人工服务更能体现就医温度,满足患者需求。例如,某大型医院引入智能客服系统处理患者基本问题(如医生预约、科室信息查询、医保政策等),客服团队虽节省了时间和精力,但患者满意度并未提高。

实际上,AI 问答在居家场景下能发挥更大作用,它不仅能回答常见问题,还能辅助患者进行健康自我评估和决策。患者可通过虚拟助手描述症状,系统依据历史数据和医学知识库给出初步诊断建议,并推荐相关科室和医生。总之,AI 问答是提升服务准确性和真实性的有力工具。

从传统搜索引擎到 AI 问答系统,医疗行业的信息获取方式发生了深刻变革。AI 问答系统提升了患者就医体验,提高了医疗服务的效率和准确性。随着技术发展,未来 AI 将为患者提供更全面、个性化的健康管理服务,与医疗机构、医生共同推动医疗行业的智能化转型。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值