6.4定轨

  其本质是利用非线性最小二乘法来进行迭代求解。利用多个时间点的测量来求取轨道初值。因此重点就是要求各个时间点的测量对于轨道初值的导数。根据链式法则,这一导数又被分成两部分,即各时间点的测量值对于测量时间点的轨道的雅各比矩阵,以及测量时间点的轨道对于初始轨道的雅各比矩阵。前者是测量雅各比,后者即状态转移矩阵。即
H k = ∂ h k ∂ x k Φ ( t k , t 0 ) (1) H_k=\frac{\partial \mathbf{h}_k}{\partial \mathbf{x}_k} \Phi\left(t_k, t_{0}\right)\tag{1} Hk=xkhkΦ(tk,t0)(1)

对于轨道问题, 状态转移矩阵有解析表达式,但较为复杂。这里采用近似处理办法:

  1. 当前估计值 x 0 x_0 x0利用轨道动力学外推得到 x 1 x_1 x1 x 2 x_2 x2 x 3 x_3 x3 x m x_m xm。它们都是 x 0 x_0 x0的函数。
  2. t 1 t_1 t1时刻, F 1 ≡ ∂ f ∂ x ∣ x 1 F_1 \equiv \frac{\partial \mathbf{f}}{\partial \mathbf{x}}\big|_{x_1} F1xfx1,状态转移矩阵近似值为 Φ ( t 1 , t 0 ) ≈ e x p ( F 1 ( t 1 − t 0 ) ) \Phi\left(t_1, t_{0}\right)\approx exp(F_1(t_1-t_0)) Φ(t1,t0)exp(F1(t1t0))。这种处理等同于将 F 1 F_1 F1 t 0 t_0 t0 t 1 t_1 t1的时间段内看作常数。
  3. t 2 t_2 t2时刻, F 2 ≡ ∂ f ∂ x ∣ x 2 F_2 \equiv \frac{\partial \mathbf{f}}{\partial \mathbf{x}}\big|_{x_2} F2xfx2,状态转移矩阵近似值为 Φ ( t 2 , t 1 ) ≈ e x p ( F 2 ( t 2 − t 1 ) ) \Phi\left(t_2, t_{1}\right)\approx exp(F_2(t_2-t_1)) Φ(t2,t1)exp(F2(t2t1))。这种处理等同于将 F 2 F_2 F2 t 1 t_1 t1 t 2 t_2 t2的时间段内看作常数。则根据状态转移矩阵性质,有 Φ ( t 2 , t 0 ) = Φ ( t 2 , t 1 ) Φ ( t 1 , t 0 ) \Phi\left(t_2, t_{0}\right)=\Phi\left(t_2, t_{1}\right)\Phi\left(t_1, t_{0}\right) Φ(t2,t0)=Φ(t2,t1)Φ(t1,t0)。以此类推,获得所有时刻的状态转移矩阵 Φ ( t m , t 0 ) \Phi\left(t_m, t_{0}\right) Φ(tm,t0)
  4. 利用 x 1 x_1 x1 x 2 x_2 x2 x 3 x_3 x3 x m x_m xm计算各测量时刻的残差 e 1 e_1 e1, e 2 e_2 e2 e m e_m em以及利用公式(1)求取 H 1 H_1 H1, H 2 H_2 H2 H m H_m Hm
  5. 进行迭代更新,获得新的估计值 x 0 x_0 x0。重复步骤(1),直到某次更新前后的误差小于某个设定值。

流程图如下:

心得,评注

1.length(x)获得矩阵x的行数与列数中较大的那个。
2.y=zeros(m*n,1); y(:)=x;是把m*n维矩阵按列叠起来形成的列向量赋给y。y记得要初始化。

  • 5
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 3
    评论
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值