2025.02.02【横向评测L1】| Deepseek与ChatGPT的生信使用体验

1. 引言

各位读者朋友好,新年期间都在忙着走亲串户。这两天才有时间对最近热门的AI模型——Deepseek做一个体验测试。毕竟号称自家R1模型对标GPT-O1性能、让英伟达股价断崖式下跌的团队,咱们肯定也要试试。昨天在直播过程中,已经简单地和chatgpt做了一个横向比对,做了一些梳理。在写这篇文章时,我又对一些细节进行了查询和补充,尽可能将结果真实,客观的进行呈现。

先说结论,就目前网页版展示的对话而言,DeepSeek-v3的性能目前还无法与Chatgpt-4o对齐。具体在哪些地方有欠缺,请看下面的详细测评。

2. 工具与方法

版本介绍:
DeepSeek-v3
Chatgpt-4o

我选择的是两个工具的网页对话模型,deepseek注册后可以在官方网站直接点击开始对话进入对话模式
在这里插入图片描述
Chatgpt则是用google邮箱登陆后,免费用户可以限制访问gpt-4o版本。因为考虑到限制访问后面可能会被切换为gpt3.5,因此提示内容我只选择了一条关于单细胞转录组的问题。

提示内容:

请详细介绍单细胞转录组的生物信息分析流程和工具代码

3. DeepSeek-V3与ChatGPT-4O详细评测

3.1 知识准确性

在评测中,我们对两款模型在生信知识的准

### DeepSeek息学分析中的应用 DeepSeek的应用主要集中在基因数据分析和预测上[^1]。该工具能够处理并解析大量复杂的基因数据集,从而辅助科研人员识别潜在的新物标志物以及特定疾病关联的基因。 对于希望利用DeepSeek开展息学工作的用户而言,最有效的途径是直接向平台提出具体问题来获取所需的息和服务而不是依赖冗长的传统使用手册[^2]。这意味着使用者应当聚焦于构建清晰、精确的问题描述以便获得针对性强的结果反馈。 #### 实际操作建议 为了更好地运用DeepSeek进行息学的研究工作: - **准备高质量的数据输入**:确保所上传用于分析的基因序列或其他物学资料具有良好的质量和准确性。 - **定义明确的目标问题**:当询问DeepSeek时,应尽可能详尽地阐述想要解决的具体科学难题或者预期达到的研究成果。 - **解读输出结果**:学会理解由DeepSeek返回的各种形式的回答及其含义,并据此指导后续实验设计或理论探索活动。 ```python # 示例代码展示如何调用API接口提交查询请求给DeepSeek服务端 import requests def query_deepseek(api_key, question): url = 'https://api.deepseek.com/v1/query' headers = {'Authorization': f'Bearer {api_key}'} payload = {"question": question} response = requests.post(url, json=payload, headers=headers) if response.status_code == 200: return response.json() else: raise Exception(f'Request failed with status code {response.status_code}') # 用户可以替换下面这行中的字符串为自己的实际问题 result = query_deepseek('your_api_key_here', 'What are the potential biomarkers for lung cancer?') print(result['answer']) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

穆易青

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值