scrcpygui 不用花钱,三步投屏手机到任何电脑系统,支持高帧率录屏、电脑控制手机。
https://gitee.com/Mirror/scrcpy-gui?_from=gitee_search
A lightweight LIO (Lidar Odometry) system was deployed on a UAV utilizing the Livox Mid-360 sensor.
https://github.com/Liansheng-Wang/LIO-Lite
livox_cloud_undistortion livox点云失真处理,并转换成cloudpoint2重新发布
https://gitee.com/xhzhu-robotic/livox_cloud_undistortion
用于快速和高质量自主空中重建的预测增强规划框架
https://github.com/HKUST-Aerial-Robotics/PredRecon
完全分散编队勘探任务
https://github.com/SYSU-STAR/RACER
使用经纬度发送ROS导航目标
https://github.com/danielsnider/gps_goal
R3+live
https://github.com/ziv-lin
sr-livo 定位和建图经度超过r3livo 和 fastlio
https://github.com/ZikangYuan/sr_livo
探索二维建图
https://github.com/hrnr/m-explore/tree/noetic-devel
增强slam3 还没开源
https://github.com/ApdowJN/Stereo-NEC
vins-fusion 重构版
https://github.com/KennyWGH/VINS-Fusion-Understood
基于滤波器的VINS框架SchurVINS
https://gitee.com/ByteDance/SchurVINS
fast-livo增强版,2代
https://github.com/hku-mars/FAST-LIVO2
FAST-LIO2、STD-LCD(环路闭合检测)、环路优化和误报环路闭合抑制集成到 LTA-OM 中。提出了长期关联(LTA)映射,以利用校正后的历史映射为 LIO 映射过程提供直接的全局约束,从而实现良好的全局映射一致性
https://github.com/hku-mars/LTAOM
Gaussian-LIC
NV-LIO 从激光雷达扫描中提取法向量,并利用它们进行对应搜索以提高点云配准性能。为了确保配准的鲁棒性,分析了法向量方向的分布,并检查了退化的情况以调整匹配不确定性。此外,还实现了一个基于视点的闭环模块,以避免被墙壁阻挡的错误对应关系
FR-LIO 根据剧烈运动程度对点云帧按时间戳自适应地划分为多个子帧来减少IMU积分误差。为了提高系统效率,我们提出了一个以机器人为中心的体素地图结构 RC-Vox,它通过一个固定尺寸的、两层的三维数组结构来维护一个以机器人为中心、以两倍激光雷达测距范围为边长的立方体范围内的局部点云地图。 可以处理剧烈运动的快速LIO系统
SchurVINS 字节跳动发布,据称是吊打一切vins,又快又好的视觉惯性导航系统
LVIO-Lite-vison 使用Camera: D455, Lidar: Mid-360可视化渲染轻量化的lio
nexte_sentry_nav 使用mid360的搭建入门的导航系统全流程
FLOAM_ssl使用realsense l515 实现像素级的场景重建
DM-VIO 在暗环境下提供具有优异性能的单目视觉里程计
fast-lio2-map-based-localization 使用循环检测和点云匹配,优化位姿更新前端,创建高质量地图,基于本地地图创建全局地图