既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上物联网嵌入式知识点,真正体系化!
由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、电子书籍、讲解视频,并且后续会持续更新
需要这些体系化资料的朋友,可以加我V获取:vip1024c (备注嵌入式)
旋转矩阵(3X3):Eigen::Matrix3d
旋转向量(3X1):Eigen::AngleAxisd
四元数(4X1):Eigen::Quaterniond
平移向量(3X1):Eigen::Vector3d
变换矩阵(4X4):Eigen::Isometry3d
以下是具体的实现代码eigen_geometry.cpp:
#include <iostream>
#include <Eigen/Dense>
using namespace std;
using namespace Eigen;
int main(int argc, char **argv) {
//下面三个变量作为下面演示的中间变量
AngleAxisd t_V(M_PI / 4, Vector3d(0, 0, 1));
Matrix3d t_R = t_V.matrix();
Quaterniond t_Q(t_V);
//对旋转向量(轴角)赋值的三大种方法
//1.使用旋转的角度和旋转轴向量(此向量为单位向量)来初始化角轴
AngleAxisd V1(M_PI / 4, Vector3d(0, 0, 1));//以(0,0,1)为旋转轴,旋转45度
cout << "Rotation\_vector1" << endl << V1.matrix() << endl;
//2.使用旋转矩阵转旋转向量的方式
//2.1 使用旋转向量的fromRotationMatrix()函数来对旋转向量赋值(注意此方法为旋转向量独有,四元数没有)
AngleAxisd V2;
V2.fromRotationMatrix(t_R);
cout << "Rotation\_vector2" << endl << V2.matrix() << endl;
//2.2 直接使用旋转矩阵来对旋转向量赋值
AngleAxisd V3;
V3 = t_R;
cout << "Rotation\_vector3" << endl << V3.matrix() << endl;
//2.3 使用旋转矩阵来对旋转向量进行初始化
AngleAxisd V4(t_R);
cout << "Rotation\_vector4" << endl << V4.matrix() << endl;
//3. 使用四元数来对旋转向量进行赋值
//3.1 直接使用四元数来对旋转向量赋值
AngleAxisd V5;
V5 = t_Q;
cout << "Rotation\_vector5" << endl << V5.matrix() << endl;
//3.2 使用四元数来对旋转向量进行初始化
AngleAxisd V6(t_Q);
cout << "Rotation\_vector6" << endl << V6.matrix() << endl;
//------------------------------------------------------
//对四元数赋值的三大种方法(注意Eigen库中的四元数前三维是虚部,最后一维是实部)
//1.使用旋转的角度和旋转轴向量(此向量为单位向量)来初始化四元数,即使用q=[cos(A/2),n\_x\*sin(A/2),n\_y\*sin(A/2),n\_z\*sin(A/2)]
Quaterniond Q1(cos((M_PI / 4) / 2), 0 * sin((M_PI / 4) / 2), 0 * sin((M_PI / 4) / 2), 1 * sin((M_PI / 4) / 2));//以(0,0,1)为旋转轴,旋转45度
//第一种输出四元数的方式
cout << "Quaternion1" << endl << Q1.coeffs() << endl;
//第二种输出四元数的方式
cout << Q1.x() << endl << endl;
cout << Q1.y() << endl << endl;
cout << Q1.z() << endl << endl;
cout << Q1.w() << endl << endl;
//2. 使用旋转矩阵转四元數的方式
//2.1 直接使用旋转矩阵来对旋转向量赋值
Quaterniond Q2;
Q2 = t_R;
cout << "Quaternion2" << endl << Q2.coeffs() << endl;
//2.2 使用旋转矩阵来对四元數进行初始化
Quaterniond Q3(t_R);
cout << "Quaternion3" << endl << Q3.coeffs() << endl;
//3. 使用旋转向量对四元数来进行赋值
//3.1 直接使用旋转向量对四元数来赋值
Quaterniond Q4;
Q4 = t_V;
cout << "Quaternion4" << endl << Q4.coeffs() << endl;
//3.2 使用旋转向量来对四元数进行初始化
Quaterniond Q5(t_V);
cout << "Quaternion5" << endl << Q5.coeffs() << endl;
//----------------------------------------------------
//对旋转矩阵赋值的三大种方法
//1.使用旋转矩阵的函数来初始化旋转矩阵
Matrix3d R1=Matrix3d::Identity();
cout << "Rotation\_matrix1" << endl << R1 << endl;
//2. 使用旋转向量转旋转矩阵来对旋转矩阵赋值
//2.1 使用旋转向量的成员函数matrix()来对旋转矩阵赋值
Matrix3d R2;
R2 = t_V.matrix();
cout << "Rotation\_matrix2" << endl << R2 << endl;
//2.2 使用旋转向量的成员函数toRotationMatrix()来对旋转矩阵赋值
Matrix3d R3;
R3 = t_V.toRotationMatrix();
cout << "Rotation\_matrix3" << endl << R3 << endl;
//3. 使用四元数转旋转矩阵来对旋转矩阵赋值
//3.1 使用四元数的成员函数matrix()来对旋转矩阵赋值
Matrix3d R4;
R4 = t_Q.matrix();
cout << "Rotation\_matrix4" << endl << R4 << endl;
//3.2 使用四元数的成员函数toRotationMatrix()来对旋转矩阵赋值
Matrix3d R5;
R5 = t_Q.toRotationMatrix();
cout << "Rotation\_matrix5" << endl << R5 << endl;
return 0;
}
上述代码对应的CMakeLists.txt为:
CMAKE\_MINIMUM\_REQUIRED(VERSION 2.8)
project(useGeometry)
include\_directories("/usr/include/eigen3")
add\_executable(eigen_geometry eigen_geometry.cpp)
- 旋转矩阵(R),旋转向量(V)和四元数(Q)在Eigen中转换关系的总结:
收集整理了一份《2024年最新物联网嵌入式全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升的朋友。
需要这些体系化资料的朋友,可以加我V获取:vip1024c (备注嵌入式)
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人
都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
sdn.net/topics/618679757)**
需要这些体系化资料的朋友,可以加我V获取:vip1024c (备注嵌入式)
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人
都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!