在人工智能的浩瀚宇宙中,大语言模型(LLM)如同璀璨的星辰,照亮了技术创新的天空。然而,要将这些"星辰"从遥远的云端带到我们的指尖,我们需要强大的"航天器"——LLM部署框架。今天,让我们一同踏上一段奇妙的旅程,探索七个杰出的开源LLM部署框架,它们各自都是工程智慧的结晶,闪耀着独特的光芒。
1. vLLM:速度之王
vLLM就像是一辆性能超凡的跑车,在LLM的赛道上疾驰而过,留下一道令人惊叹的光影。
核心特性:
-
连续批处理:如同一位技艺精湛的杂技演员,vLLM能够在空中灵活地调整批次大小,确保每一次迭代都达到最佳平衡。
-
PagedAttention:这项创新堪比计算机科学中的"虚拟内存"概念,为模型带来了前所未有的加速效果。
优点:
-
速度之王:在文本生成的领域,vLLM就是闪电般的存在,远超其他框架。
-
高吞吐量:就像一个永不疲倦的邮递员,能够高效处理海量的查询请求。
-
OpenAI兼容API:与OpenAI API的无缝对接,犹如为您的项目插上了翱翔的翅膀。
局限性:
-
添加自定义模型可能会有些棘手,就像在精密的瑞士钟表中加入新的齿轮。
-
缺乏对适配器的支持,这就像是一辆高性能跑车没有可更换的轮胎。
-
没有权重量化功能,可能会让一些内存受限的设备望而却步。
“vLLM,速度的化身,为您的LLM项目注入火箭般的推进力!”
2. Text Generation Inference:HuggingFace的得力助手
Text Generation Inference就像是HuggingFace家族中的多功能瑞士军刀,随时准备应对各种挑战。
核心特性:
-
内置Prometheus指标:就像是给您的服务器装上了一个全方位的健康监测仪。
-
使用flash-attention和Paged Attention:这些优化就像是给Transformer注入了兴奋剂,让它跑得更快、跳得更高。
优点:
-
Docker一键部署:犹如魔法般,只需一个命令就能创造出完整的运行环境。
-
原生支持HuggingFace模型:与HuggingFace的生态系统完美融合,就像鱼儿回到了大海。
-
灵活的推理控制:提供了丰富的调整选项,让您如同指挥家一样掌控模型的每一个音符。
局限性:
-
缺乏适配器支持,这就像是一把瑞士军刀缺少了一个关键的工具。
-
从源代码编译可能会有些挑战,就像是在组装一个复杂的乐高积木。
-
文档有待完善,有时候会让人感觉像是在迷宫中探索。
“Text Generation Inference,HuggingFace生态系统中的瑞士军刀,为您的项目增添无限可能!”
3. CTranslate2:CPU推理的黑马
CTranslate2就像是一匹善于长跑的骏马,在CPU的赛道上展现出惊人的耐力和速度。
核心特性:
-
高效的CPU和GPU执行:通过一系列精妙的优化,CTranslate2能够在资源有限的环境中实现出色的性能。
-
动态内存使用:就像是一个精明的资源管理者,根据需求灵活调配内存,既节省又高效。
-
多CPU架构支持:适应性强,能够在各种不同的处理器上如鱼得水。
优点:
-
并行和异步执行:就像是一个训练有素的管弦乐队,多个核心协同工作,奏响美妙的性能交响曲。
-
提示缓存:巧妙地重用模型状态,就像是给LLM装上了一个超级记忆芯片。
-
轻量级存储:通过量化技术,将模型体积缩小到原来的1/4,却几乎不损失精度,堪称存储空间的魔术师。
局限性:
-
缺少内置的REST服务器,这就像是一辆性能优秀的赛车,但还需要自己搭建赛道。
-
同样缺乏对适配器的支持,限制了模型的灵活性。
“CTranslate2,CPU推理的隐藏冠军,让您的设备释放出意想不到的潜力!”
4. DeepSpeed-MII:微软的高性能利器
DeepSpeed-MII就像是微软打造的一艘宇宙飞船,搭载着强大的DeepSpeed引擎,ready to explore the LLM universe。
核心特性:
-
多节点负载均衡:就像是一个训练有素的交通指挥官,能够高效地分配和管理大量的请求。
-
非持久部署:这种方法就像是给您的系统穿上了一件可以随时更换的外衣,既灵活又安全。
优点:
-
支持多个模型仓库:就像是一个博学多才的图书管理员,能够从各种不同的"书架"上取到您需要的模型。
-
量化带来的成本优化:通过巧妙的量化技术,DeepSpeed-MII能够大幅降低昂贵语言模型的运行成本,就像是给您的项目装上了省钱的"神器"。
-
与Azure的无缝集成:如果您是Azure的用户,DeepSpeed-MII就像是为您量身定制的完美搭档。
局限性:
-
缺乏官方发布版本,有时会让人感觉像是在寻找海底针。
-
支持的模型数量有限,这就像是一个装备精良但选择不多的武器库。
-
同样缺乏对适配器的支持,限制了模型的定制化能力。
“DeepSpeed-MII,微软的高性能利器,为您的LLM项目插上Azure的翅膀!”
5. OpenLLM:灵活多变的百变小魔术师
OpenLLM就像是一个变幻莫测的魔术师,能够根据不同的需求变出各种各样的"魔法"。
核心特性:
-
适配器支持:就像是给LLM装上了一个万能插座,可以根据需要接入不同的"电器"。
-
多种运行时实现:无论您喜欢Pytorch、Tensorflow还是Flax,OpenLLM都能满足您的需求,就像是一个精通多国语言的翻译官。
-
HuggingFace代理:让您能够用自然语言来管理HuggingFace上的模型,就像是给模型装上了一个智能管家。
优点:
-
活跃的社区支持:就像是一个永不休眠的客服团队,随时为您解答疑惑。
-
易于集成新模型:为开发者提供了清晰的指南,就像是给您一张详细的地图,指引您探索未知的领域。
-
支持多种量化方法:让您能够根据需求选择最适合的量化策略,就像是一个灵活的调音师。
-
LangChain集成:与LangChain的无缝对接,为您的项目开启无限可能。
局限性:
-
缺乏批处理支持,这可能会成为处理大量消息时的瓶颈。
-
分布式推理需要额外安装组件,就像是需要额外购买配件才能发挥全部功能的电子产品。
“OpenLLM,灵活多变的百变小魔术师,为您的LLM项目带来无限可能!”
6. Ray Serve:全能型的模型服务专家
Ray Serve就像是一个经验丰富的酒店经理,能够高效地管理和服务各种类型的"客人"(模型)。
核心特性:
-
监控仪表板和Prometheus指标:就像是给您的系统装上了一个全方位的监控摄像头,让您对系统的每一个角落了如指掌。
-
自动跨多个副本缩放:能够根据流量的变化自动调整资源,就像是一个聪明的交通管理系统。
-
动态请求批处理:巧妙地平衡了资源利用和响应时间,就像是一个技艺精湛的杂耍艺人。
优点:
-
详尽的文档:就像是一本写得极其详细的百科全书,几乎涵盖了所有可能遇到的情况。
-
生产就绪:经过充分测试和优化,随时可以投入实际生产环境,就像是一辆经过严格质检的豪华轿车。
-
原生LangChain集成:与LangChain的完美配合,为您的项目带来无限可能。
局限性:
-
缺乏内置的模型优化功能,这就像是一个功能强大的厨房,但还需要您自己调配佐料。
-
学习曲线较陡,对新手不太友好,就像是一架复杂的飞机驾驶舱,需要一定的时间来熟悉各种控制。
“Ray Serve,全能型的模型服务专家,为您的项目提供稳定可靠的后盾!”
7. MLC LLM:边缘设备的得力助手
MLC LLM就像是一个神奇的"缩小射线",能够将庞大的语言模型压缩到可以在各种消费设备上运行的程度。
核心特性:
-
平台原生运行时:就像是一个变色龙,能够完美地适应不同设备的原生环境。
-
内存优化:通过各种巧妙的技术,将庞大的模型压缩到能够在资源受限的设备上运行,就像是一个空间折叠魔法。
优点:
-
JSON配置文件:所有设置都可以在一个配置文件中定义,就像是给您的项目一个简洁明了的操作手册。
-
预构建的应用程序:为不同的平台提供了现成的应用程序,就像是一套多功能的乐高积木,可以直接组装使用。
局限性:
-
LLM功能有限,不支持一些高级特性,这就像是一辆性能优秀但功能简单的小型车。
-
仅支持分组量化,这在某些情况下可能会限制模型的性能表现。
-
安装过程复杂,可能会让新手望而却步,就像是一个需要多年训练才能掌握的武功秘籍。
“MLC LLM,边缘设备的得力助手,让您的LLM在任何设备上都能大显身手!”
结语
在这场LLM部署框架的盛宴中,我们品尝了七道独具特色的"菜肴"。每一个框架都有其独特的风味和亮点,就像是一场绚丽的烟花秀,各自绽放出不同的光彩。
-
如果您追求极致的速度,vLLM就是您的不二之选。
-
若您深度使用HuggingFace生态系统,Text Generation Inference将是您的得力助手。
-
在资源受限的环境中,CTranslate2能够让您的CPU发挥出惊人的性能。
-
对于熟悉Azure生态系统的用户,DeepSpeed-MII将带给您无与伦比的体验。
-
如果您需要高度的灵活性和适应性,OpenLLM就是为您量身打造的。
-
在追求稳定性和可扩展性的企业级项目中,Ray Serve将成为您可靠的后盾。
-
而对于那些需要在边缘设备上部署LLM的开发者,MLC LLM无疑是您的最佳选择。
记住,没有一个框架是万能的,选择最适合您需求的才是最好的。就像在茫茫宇宙中寻找适合人类居住的星球,找到最适合您项目的LLM部署框架可能需要一些时间和尝试,但当您找到那个"命中注定"的框架时,您的项目将如虎添翼,在AI的海洋中乘风破浪!
让我们一起拥抱这个LLM的新时代,用这些强大的工具去创造、去innovate、去改变世界!🚀🌟
零基础如何学习AI大模型
领取方式在文末
为什么要学习大模型?
学习大模型课程的重要性在于它能够极大地促进个人在人工智能领域的专业发展。大模型技术,如自然语言处理和图像识别,正在推动着人工智能的新发展阶段。通过学习大模型课程,可以掌握设计和实现基于大模型的应用系统所需的基本原理和技术,从而提升自己在数据处理、分析和决策制定方面的能力。此外,大模型技术在多个行业中的应用日益增加,掌握这一技术将有助于提高就业竞争力,并为未来的创新创业提供坚实的基础。
大模型典型应用场景
①AI+教育:智能教学助手和自动评分系统使个性化教育成为可能。通过AI分析学生的学习数据,提供量身定制的学习方案,提高学习效果。
②AI+医疗:智能诊断系统和个性化医疗方案让医疗服务更加精准高效。AI可以分析医学影像,辅助医生进行早期诊断,同时根据患者数据制定个性化治疗方案。
③AI+金融:智能投顾和风险管理系统帮助投资者做出更明智的决策,并实时监控金融市场,识别潜在风险。
④AI+制造:智能制造和自动化工厂提高了生产效率和质量。通过AI技术,工厂可以实现设备预测性维护,减少停机时间。
…
这些案例表明,学习大模型课程不仅能够提升个人技能,还能为企业带来实际效益,推动行业创新发展。
学习资料领取
如果你对大模型感兴趣,可以看看我整合并且整理成了一份AI大模型资料包,需要的小伙伴文末免费领取哦,无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发
部分资料展示
一、 AI大模型学习路线图
整个学习分为7个阶段
二、AI大模型实战案例
涵盖AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,皆可用。
三、视频和书籍PDF合集
从入门到进阶这里都有,跟着老师学习事半功倍。
四、LLM面试题
五、AI产品经理面试题
😝朋友们如果有需要的话,可以V扫描下方二维码联系领取~
👉[CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)]👈