1. 预测简介
无人车在许多物体间穿梭行驶,有时这些物体本身也在运动,例如:行人、车辆。
无人车需要预测这些物体的行为,这样才能保证我们的无人车做出最佳决策。
我们通过生成一条路径 来预测一个物体的行为。
这节课中,我们学习 Apollo如何根据 其他移动物体的状态,以及 无人车的位置 去预测这些移动物体的路径。
预测路径的要求:
- 实时性:指 我们算法的延迟越短越好。
一辆 60km/h 的汽车,每(0.25)秒 移动约 (5米)20米。
所以我们要保证在前方5米 没有障碍物可以安全穿行。
- 准确性:
如果我们预测邻近车道的车辆想要并道,我们应该减速;
如果我们预测它会保持在它的车道上行驶,我们可以保持当前速度。
我们想要预测足够准确,这样才能帮助无人车做出很好的决策。
- 预测模块也要有学习新行为的能力:
路况是非常复杂的,想要开发出每种场景的静态模型几乎是不可能的。
一旦预测模块具有学习能力,算法就能够随着时间的推移提升预测能力。
2. Sebastian介绍预测
预测也是决策的核心之一,因为只要你知道该期待什么,你就会做出更好的决策。
Once you know what to expect, you will make much much better decisions.
3. 不同的预测方式
两种预测方式:
- 基于模型的预测
假设无人车来到一个 T 形路口,看到一辆车从左面驶来,
此刻我们不确定这辆车 直行还是右转。
基于模型的方法:我们为此场景构建了两个候选模型,