【sensor】激光雷达的分类和优缺点(六)

【sensor】镜头评价指标及测试方法(一)
【sensor】镜头评价指标及测试方法(二)—畸变与分辨率
【sensor】镜头评价指标及测试方法(三)--------测量原理及3D相机调查
【sensor】镜头评价指标及测试方法【四】————手机摄像头调查
【sensor】激光雷达dToF(五)
【sensor】激光雷达的分类和优缺点(六)

1. 基础分类

下面是一个扩展的表格,包括了各种激光雷达的使用场景、测量距离和测量频率等信息:

激光雷达分类使用场景测量距离测量频率优点缺点
机械式激光雷达地形测绘、建筑建模、自动驾驶测试可达100米以上10Hz - 1000Hz- 测量精度高
- 技术成熟
- 适用于高精度测绘
- 成本高
- 机械部件易损坏
- 维护成本高
- 体积较大
固态激光雷达自动驾驶汽车、无人机测绘、室内导航可达200米1Hz - 100Hz- 无机械旋转部件,可靠性高
- 体积小,易于集成
- 成本相对较低
- 测量精度和范围可能较低
- 技术相对较新,尚未完全成熟
单线激光雷达机器人导航、障碍物检测、辅助驾驶可达30米5Hz - 100Hz- 价格较低
- 体积小,功耗低
- 只能提供有限的环境信息
- 不适合复杂的环境感知
多线激光雷达自动驾驶汽车、高精度地图构建可达150米10Hz - 500Hz- 提供丰富的环境信息
- 可以生成物体的3D模型
- 适用于自动驾驶
- 成本高
- 功耗和数据处理要求较高
地面激光雷达地形测绘、林业调查、考古可达1公里1Hz - 10Hz- 适用于精确的地形测绘和建筑建模- 通常体积较大,不适合移动平台
空中激光雷达林业、农业监测、地形测绘可达2公里0.1Hz - 1Hz- 可以快速覆盖大面积区域
- 适合森林、农田等的测绘
- 受飞行高度和天气条件的限制
车载激光雷达自动驾驶汽车环境感知可达200米10Hz - 100Hz- 为自动驾驶汽车提供实时的环境感知- 对恶劣天气条件的适应性较差

请注意,上表中的测量距离和测量频率是大致的估计值,实际的参数可能会根据具体的激光雷达型号和制造商有所不同。例如,一些高端的机械式激光雷达可能提供更远的测量距离和更高的测量频率,而一些定制的固态激光雷达可能具有非常接近机械式激光雷达的性能。此外,随着技术的发展,这些参数可能会有所改进。

2. 按照原理分类

激光雷达的测距原理主要由两种:三角测距,飞行时间(Time of Flight,ToF)测距。其中飞行时间测距又分为直接飞行时间测距(direct Time of Flight,dToF)和间接飞行时间测距(indirect Time of Flight, iToF)。

2.1 三角测距原理

如图所示,激光雷达发射激光,反射光通过接收透镜打再线阵CCD/CMOS上,根据打在CCD/CMOS上的光点与主光轴的距离d,利用相似三角形原理计算出物体与激光雷达的距离D。

可以想象:当距离很远时(即D很大,d很小时),此时d的变化就对D的变化不再敏感,激光雷达的精度大打折扣。因此三角测距原理的激光雷达一般只适用于家用扫地机器人等小场景。
在这里插入图片描述

2.2 dToF测距原理

在这里插入图片描述

直接的飞行时间测距就是通过激光从发射到返回的时间t来测量距离,即D = c * t / 2。由于是利用光速测距,因此理论上不会因为距离远而有精度的下降,因此dToF的有效探测距离很远。

但是dToF测距也有其缺陷,那就是关于往返飞行时间t的测量:假如物体A与物体B距离相差1.5m,则二者的往返时间t1与t2的差值约为0.00000001s,这给予计时器的测量精度极大的压力,因此通常dToF的图像分辨率不会很高。

2.3 iToF测距原理

iToF顾名思义时采用间接的方法测量飞行时间,具体地说是测量接收波与发射波的相位差,转换成具体的飞行时间,再计算飞行距离。
在这里插入图片描述在这里插入图片描述

由于iToF并不直接测量飞行时间,因此不需要高精度的时间测量,所以相比于dToF,iToF的图像分辨率较高。

但是如果距离过远的话,接收波的波形会出现信噪比减小、相位模糊等问题,因此iToF的有效探测距离不如dToF。

2.4 优缺点总结

在这里插入图片描述

3. 根据扫描方式分类

激光雷达的扫描方式主要分三种:机械式、类固态(MEMS,旋镜式)、纯固态(OPA、Flash)。

3.1 机械式激光雷达

机械激光雷达带有控制激光发射角度的旋转部件,而固态激光雷达则无需机械旋转部件,主要依靠电子部件来控制激光发射角度。

在这里插入图片描述
以velodyne系列激光类为代表,机械式激光雷达是当前自动驾驶最成熟的传感器方案,但仍存在诸多问题,如成本高、尺寸大、难符合车规、机械结构易损坏、可量产性差等等。

3.2 类固态激光雷达

包含MEMS激光雷达和旋镜式激光雷达。

这种类固态激光雷达一定程度上降低了激光雷达的成本和尺寸,并且避免了机械式激光雷达结构易损坏的问题,但是仍存在可量产性、精度、成熟性等问题,是一种较好的过渡方案。
在这里插入图片描述

3.3 纯固态激光雷达

纯固态激光雷达主要包括:OPA激光雷达、Flash激光雷达

纯固态激光雷达现在技术很不成熟,性能很差,未来汽车前景很好,但是就目前来讲无法应用于自动驾驶汽车。在这里插入图片描述

3.4 不同扫描方式的激光雷达优缺点

在这里插入图片描述

4.Livox激光雷达

专门对Livox激光雷达进行单独的介绍。

4.1 Livox测距原理与扫描方式

在这里插入图片描述
Livox激光雷达属于类固态激光雷达,采用的是dToF测距原理,旋镜式扫描方式。具有成本低、性能好、探测距离远的特点。

4.2 非重复扫描方式

Livox采用了独特的棱镜扫描方式,使用两个棱镜,让光线从不同的方向发射,也因为这个设计,棱镜雷达不像传统旋转激光雷达一样让收发模块在进行转动,从而避免了类似传统旋转激光雷达的多次校准,可以看出,随着时间的增加,机械雷达的点云没有增加额外的信息量,密度恒定不变。而Livox的扫描方式能够随着时间的增加获取更细致的空间三维信息。另外由于点云采集与时间有关,在激光雷达高速运动时,Livox仍然会产生一些运动畸变。
在这里插入图片描述

相对于传统机械式激光雷达,Livox激光雷达的FOV(视场角)较小,应用于自动驾驶汽车时,往往需要多个激光雷达配合补盲使用。

(关于FOV小,非重复扫描方式,以及高速情况的运动畸变问题,这些特性在LOAM_Livox算法中都有体现)
在这里插入图片描述

### 激光雷达、摄像头、毫米波雷达融合检测算法 #### 实现原理 多传感器融合技术旨在综合来自多个不同类型传感器的数据,以提供更加全面精确的环境感知能力。对于激光雷达、摄像头毫米波雷达这三种传感器而言,每种都有各自的特点: - **激光雷达** 提供高精度的空间位置信息,能够构建详细的三维地图并识别静态与动态障碍物; - **摄像头** 可捕捉丰富的纹理细节,有助于分类物体类别(行人、汽车等); - **毫米波雷达** 对于距离、速度及角度有着出色的测量效果,并且不受光照变化或恶劣天气的影响。 为了实现三者的有效融合,一般采用以下几种方法之一或将多种方式结合起来使用: 1. **早期融合(Early Fusion)** 将各传感器采集到的原始数据直接拼接在一起形成统一表示形式后再进行后续处理。这种方式能保留最多的信息量但也增加了计算复杂度。 2. **中期融合(Mid-Level Fusion)** 部分预处理后的特征被提取出来作为输入给定模型训练;相比起早融减少了冗余信息同时也降低了难度。 3. **晚期融合(Late Fusion)** 各自独立完成初步分析之后再把结果汇总起来做出最终决策判断。此方案易于实施但可能会损失部分交互特性之间的关联性[^1]。 ```python def fusion_algorithm(sensor_data): lidar_points = sensor_data['lidar'] camera_images = sensor_data['camera'] radar_signals = sensor_data['radar'] # Early Fusion Example (Pseudo Code) combined_input = concatenate(lidar_points, extract_features(camera_images), process_radar(radar_signals)) detection_results = model.predict(combined_input) return detection_results ``` #### 优缺点 | 特征 | 描述 | | --- | --- | | **优势** | 更加精准的目标定位与跟踪;增强对周围环境的理解力;提高系统的可靠性安全性;能够在各种条件下稳定工作。| | **劣势** | 增加了硬件成本技术门槛;需要解决同步问题确保所有设备在同一时间点获取相同场景下的观测值;不同类型的信号可能存在延迟差异需特别注意校准调整。| #### 应用场景 这种多源异构数据融合的技术广泛应用于高级辅助驾驶系统(ADAS)以及完全无人驾驶车辆当中。特别是在城市道路环境中,复杂的交通状况要求车辆具备高度敏感的安全机制来应对突发情况。此外,在高速公路巡航控制、自动泊车等功能上也有着不可替代的作用。由于毫米波雷达在不良气候条件下的优越表现,使得该类融合方案成为全天候运行的理想选择[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大江东去浪淘尽千古风流人物

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值