SLAM问题的形式和结构

SLAM是移动机器人在未知环境中同时构建地图和定位的过程。文章介绍了SLAM的概率模型,包括状态变量定义、观测模型和运动模型,以及递归的预测和测量更新步骤。SLAM问题的关键在于路标位置估计的相互关联性,随着观测增加,路标间的相对位置精度不断提升,从而形成稳定的环境地图。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

        SLAM是移动机器人建立环境的地图同时演绎出自己位置的过程。在SLAM中,平台的轨迹和所有地标的位置都是在线估计的,不需要任何位置的先验知识。

准备工作

       考虑移动机器人运动经过一个环境使用安装在机器人上面传感器对大量未知的路标进行相对观测,如图1所示。在时刻k,定义如下变量:

\mathbf{x}_{k}:描述机器人位置和姿态的状态向量。

\mathbf{u}_{k}:控制向量,被用于在k-1时刻驱动机器人到k时刻的状态向量\mathbf{x}_{k}

\mathbf{m}_{i}:描述第i个路标位置的向量,它们的真实位置假定为静止的。

\mathbf{z}_{ik}:在k时刻机器人观测到的第i个路标的位置。当在任何时刻都有大量被观测到的路标或者当一个特定的路标和讨论的不相关时,观测量将被简化成\mathbf{z}_{k}

除此之外,还定义了如下集合:

\mathbf{X}_{0:k}=\left \{ \mathbf{x}_{0},\mathbf{x}_{1},...,\mathbf{x}_{k} \right \}=\left \{\mathbf{X}_{0:k-1}, \mathbf{x}_{k} \right \}:机器人位置的历史值。

\mathbf{U}_{0:k}=\left \{ \mathbf{u}_{1},\mathbf{u}_{2},...,\mathbf{u}_{k} \right \}=\left \{\mathbf{U}_{0:k-1}, \mathbf{u}_{k} \right \}:控制输入量的历史值。

\mathbf{m}=\left \{ \mathbf{m}_{1},\mathbf{m}_{2},...,\mathbf{m}_{n} \right \}:所有路标的集合。

### 束调整 (Bundle Adjustment, BA) 的图结构解释 束调整是一种用于优化相机姿态三维点位置的技术,广泛应用于视觉 SLAM 中。它的目标是最小化重投影误差,从而提高估计的精确性一致性。 #### 1. 图模型中的节点定义 在 BA 的图结构中,通常有两种类型的节点: - **相机节点**:表示每一帧图像对应的相机位姿(即旋转平移参数)。这些节点存储了相机的位置方向信息。 - **路标节点**:表示场景中的三维点坐标。这些节点对应于被观测到的世界中的固定特征点[^1]。 #### 2. 边的定义及其意义 边连接的是相机节点路标节点之间的关系,具体来说: - 如果某个三维点在一个特定的相机视图中被观察到,则会在该相机节点与相应的路标节点之间建立一条边。 - 这条边代表了一种测量约束——即已知的二维像素坐标与其对应的三维空间坐标的关联关系。这种关联通过重投影方程来建模[^3]。 #### 3. 成本函数构建 整个 BA 问题可以通过最小二乘法形式表达为寻找最优解使得总的成本函数达到极小值。成本函数一般写成如下形式: ```python def cost_function(parameters): total_error = 0 for camera_node in parameters['cameras']: for landmark_node in parameters['landmarks']: if is_visible(camera_node, landmark_node): # Check visibility condition reprojection_error = compute_reprojection_error( project(landmark_node.position, camera_node.pose), observed_pixel_position ) total_error += robust_kernel(reprojection_error)**2 # Apply a robust kernel function return total_error ``` 这里 `is_visible` 函数判断某一点是否能被当前摄像机看到;`compute_reprojection_error` 计算实际观测值同预测值间的差异;而 `robust_kernel` 则引入了一个鲁棒核函数用来减轻异常值的影响。 #### 4. 非线性最优化求解过程 由于上述问题是高度非线性的,所以采用诸如高斯牛顿法或者列文伯格马夸特算法来进行迭代更新直到收敛为止。每次迭代都会重新计算雅可比矩阵以及海森矩阵近似项以便找到下降最快的方向[^2]。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

_IRONMAN_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值