【智能算法】猎豹优化器(CO)原理及实现

在这里插入图片描述


1.背景

2022年,MA Akbari等人受到自然界中猎豹捕猎行为启发,提出了猎豹优化器(The Cheetah Optimizer,CO)。

2.算法原理

2.1算法思想

CO法对猎豹的捕猎机制进行模拟,主要包括搜索、坐等和攻击 3 种策略。
在这里插入图片描述

2.2算法过程

搜索策略

猎豹用两种方式寻找猎物:即在区域内全范围扫描或主动搜索。在狩猎期间,根据猎物的条件、区域的覆盖范围和猎豹自身的条件,猎豹可能会选择这两种搜索模式的连锁。位置更新为:
x i , j t + 1 = x i , j t + r i , j − 1 ⋅ α i , j t (1) x_{i,j}^{t+1}=x_{i,j}^{t}+r_{i,j}^{-1}\cdot\alpha_{i,j}^{t}\tag{1} xi,jt+1=xi,jt+ri,j1αi,jt(1)
其中,ri,ai为猎豹i的随机化参数和步长,ai一般可设置为0.001*t/T。

坐等策略

为避免猎物意识到猎豹的存在,猎豹保持位置,等待猎物靠近:
x i , j t + 1 = x i , j t (2) x_{i,j}^{t+1}=x_{i,j}^{t}\tag{2} xi,jt+1=xi,jt(2)
该策略能够避免 CO 过早收敛。
在这里插入图片描述

攻击策略

猎豹利用速度和灵活性捕捉猎物。在群体狩猎中,每只猎豹可以根据逃跑的猎物和首领或附近猎豹的状态调整自己的位置:
x i , j t + 1 = x B , j t + θ i , j ⋅ β i , j t (3) x_{i,j}^{t+1}=x_{B,j}^{t}+\theta_{i,j}\cdot\beta_{i,j}^{t}\tag{3} xi,jt+1=xB,jt+θi,jβi,jt(3)

其中,B代表猎物, θ , β \theta,\beta θ,β转向因子和相互作用因子。

伪代码

在这里插入图片描述

3.结果展示

在这里插入图片描述

4.参考文献

[1] Akbari M A, Zare M, Azizipanah-Abarghooee R, et al. The cheetah optimizer: A nature-inspired metaheuristic algorithm for large-scale optimization problems[J]. Scientific reports, 2022, 12(1): 10953.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小O的算法实验室

谢谢大佬的肯定!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值