【智能算法】饥饿游戏搜索算法(HGS)原理及实现

本文介绍了Yang等人提出的HungerGamesSearch(HGS)算法,受动物觅食行为启发,强调饥饿驱动力在决策过程中的作用。算法通过模拟群居动物的合作与竞争,展示了其在优化问题中的性能。通过CEC2005-F7测试,验证了算法的效率和适应性。
摘要由CSDN通过智能技术生成

在这里插入图片描述


1.背景

2021年,Yang等人受到自然界饥饿驱动的活动和动物的行为选择启发,提出了饥饿游戏搜索算法(Hunger Games Search, HGS)。

在这里插入图片描述

在这里插入图片描述

2.算法原理

2.1算法思想

HGS源自动物在寻找食物时的行为模式,强调动物根据感知信息和计算规则与环境交互,优先选择和追求食物来源以支持生存、繁殖和获取食物。饥饿作为强大的驱动力,能够推动动物行为,并在竞争和其他驱动力之间起主导作用。

2.2算法过程

群居动物在觅食过程中经常相互合作:
X ( t + 1 ) → = { G a m e 1 : X ( t ) → • ( 1 + r a n d n ( 1 ) ) , r 1 < l G a m e 2 : W 1 → • X b → + R → • W 2 → • ∣ X b → − X ( t ) → ∣ , r 1 > l , r 2 > E G a m e 3 : W 1 → • X b → − R → • W 2 → • ∣ X b → − X ( t ) → ∣ , r 1 > l , r 2 < E (1) \left.\overrightarrow{X(t+1)}=\left\{\begin{array}{c}Game_1:\overrightarrow{X(t)}•(1+randn(1)),r_1<l\\Game_2:\overrightarrow{W_1}•\overrightarrow{X_b}+\overrightarrow{R}•\overrightarrow{W_2}•\left|\overrightarrow{X_b}-\overrightarrow{X(t)}\right|,r_1>l,r_2>E\\Game_3:\overrightarrow{W_1}•\overrightarrow{X_b}-\overrightarrow{R}•\overrightarrow{W_2}•\left|\overrightarrow{X_b}-\overrightarrow{X(t)}\right|,r_1>l,r_2<E\end{array}\right.\right.\tag{1} X(t+1) = Game1:X(t) (1+randn(1)),r1<lGame2:W1 Xb +R W2 Xb X(t) ,r1>l,r2>EGame3:W1 Xb R W2 Xb X(t) ,r1>l,r2<E(1)
在这里插入图片描述
E是所有位置的变分控制:
E = s e c h ( ∣ F ( i ) − B F ∣ ) (2) E=\mathrm{sech}(|F(i)-BF | )\tag{2} E=sech(F(i)BF)(2)
BF是当前迭代最优适应度,sech为双曲函数:
s e c h ( x ) = 2 e x + e − x (3) \mathrm{sech}(x)=\frac2{e^x+e^{-x}}\tag{3} sech(x)=ex+ex2(3)
参数表述为:
R → = 2 × s h r i n k × r a n d − s h r i n k s h r i n k = 2 × ( 1 − t T ) (4) \begin{aligned}&\overrightarrow{R}=2\times shrink\times rand-shrink\\&shrink=2\times(1-\frac tT)\end{aligned}\tag{4} R =2×shrink×randshrinkshrink=2×(1Tt)(4)
个体在搜索中的饥饿特征:
W 1 ( i ) → = { h u n g r y ( i ) • N S H u n g r y × r 4 , r 3 < l 1 r 3 > l (5) \overrightarrow{W_1(i)}=\begin{cases} hungry(i)•\dfrac{N}{SHungry}\times r_4,r_3<l\\ 1r_3>l\end{cases}\tag{5} W1(i) = hungry(i)SHungryN×r4,r3<l1r3>l(5)
W2表达式表述为:
W 2 ( i ) → = ( 1 − e x p ( − ∣ h u n g r y ( i ) − S H u n g r y ∣ ) ) × r 5 × 2 (6) \overrightarrow{W_2(i)}=(1-exp(-|hungry(i)-SHungry|))\times r_5\times2\tag{6} W2(i) =(1exp(hungry(i)SHungry))×r5×2(6)
hungry代表每个人的饥饿,SHungry是所有个体饥饿感受的总和,hungry(i)表述为:
h u n g r y ( i ) = { 0 , A l l F i t n e s s ( i ) = = B F h u n g r y ( i ) + H , A l l F i t n e s s ( i ) ! = B F (7) hungry(i)=\left\{\begin{array}{c}0,AllFitness(i)==BF\\hungry(i)+H,AllFitness(i)!=BF\end{array}\right.\tag{7} hungry(i)={0,AllFitness(i)==BFhungry(i)+H,AllFitness(i)!=BF(7)
AllFitness(i)保留当前迭代中每个个体的适应度。在每次迭代中,最佳个体的饥饿感被设置为0。对于其他个体,在原有饥饿的基础上增加一个hungry(H),H表述为:
T H = F ( i ) − B F W F − B F × r 6 × 2 × ( U B − L B ) H = { L H × ( 1 + r ) , T H < L H T H , T H ≥ L H (8) TH=\frac{F(i)-BF}{WF-BF}\times r_6\times2\times(UB-LB)\\H=\left\{\begin{array}{c}LH\times(1+r),TH<LH\\TH,TH\geq LH\end{array}\right.\tag{8} TH=WFBFF(i)BF×r6×2×(UBLB)H={LH×(1+r),TH<LHTH,THLH(8)

流程图

在这里插入图片描述

伪代码

在这里插入图片描述

3.结果展示

使用测试框架,测试HGS性能 一键run.m

CEC2005-F7
在这里插入图片描述
在这里插入图片描述

探索与开发

在这里插入图片描述

4.参考文献

[1] Yang Y, Chen H, Heidari A A, et al. Hunger games search: Visions, conception, implementation, deep analysis, perspectives, and towards performance shifts[J]. Expert Systems with Applications, 2021, 177: 114864.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小O的算法实验室

谢谢大佬的肯定!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值