【智能算法】鸡群优化算法(CSO)原理及实现

本文介绍了鸡群优化算法(CSO),一种受鸡群社会行为启发的搜索算法。它通过模拟鸡的身份等级和觅食行为来优化问题求解。算法包括公鸡、母鸡和小鸡的角色,以及适应度值驱动的食物获取和位置更新规则。展示了算法的过程和伪代码,以及相关研究的引用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述


1.背景

2014年,X Meng等人受到鸡群社会行为启发,提出了鸡群优化算法(Chicken Swarm Optimization, CSO)。

2.算法原理

2.1算法思想

CSO算法的思想是基于对鸡群的模拟行为,其中鸡的身份(公鸡、母鸡和小鸡)取决于其适应度值。适应度值最好的鸡被选为公鸡,适应度值最差的鸡被认为是小鸡,其余鸡被视为母鸡。鸡群中的等级秩序、优势关系和母子关系定期更新。公鸡带领同伴寻找食物,但也会阻止其他鸡吃掉它们的食物。

2.2算法过程

适合度值高的公鸡比适合度值低的公鸡优先获得食物,适合度值越高的攻击搜索范围越大:
x i , j t + 1 = x i , j t ∗ ( 1 + R a n d n ( 0 , σ 2 ) ) . σ 2 = { 1 , i f f i ≤ f k , exp ⁡ ( ( f k − f i ) ∣ f i ∣ + ε ) , o t h e r w i s e , k ∈ [ 1 , N ] , k ≠ i . (1) x_{i,j}^{t+1}=x_{i,j}^{t}*(1+Randn(0,\sigma^{2})) .\\\sigma^{2}=\begin{cases}1 ,if f_i\leq f_k ,\\\exp (\frac{(f_k-f_i)}{|f_i|+\varepsilon}), otherwise,\end{cases}k\in[1,N],k\neq i .\tag{1} xi,jt+1=xi,jt(1+Randn(0,σ2)).σ2={1,iffifk,exp(fi+ε(fkfi)),otherwise,k[1,N],k=i.(1)
母鸡跟随公鸡一起寻找食物,也会随机偷取其他鸡找到的好食物,尽管受到其他鸡的抑制。在食物争夺中,强势的母鸡比温顺的母鸡更具优势:
x i , j t + 1 = x i , j t + S 1 ∗ R a n d ∗ ( x r 1 , j t − x i , j t ) + S 2 ∗ R a n d ∗ ( x r 2 , j t − x i , j t ) S 1 = exp ⁡ ( ( f i − f r 1 ) / ( a b s ( f i ) + ε ) ) S 2 = exp ⁡ ( ( f r 2 − f i ) ) (2) x_{i,j}^{t+1}=x_{i,j}^t+S1*Rand*\left(x_{r1,j}^t-x_{i,j}^t\right)+S2*Rand*\left(x_{r2,j}^t-x_{i,j}^t\right)\\S1=\exp( (f_i-f_{r1}) /(abs(f_i)+\varepsilon) )\\S2=\exp((f_{r2}-f_i)) \tag{2} xi,jt+1=xi,jt+S1Rand(xr1,jtxi,jt)+S2Rand(xr2,jtxi,jt)S1=exp((fifr1)/(abs(fi)+ε))S2=exp((fr2fi))(2)
母鸡的适应度值越小,S1越接近1,与公鸡的位置差距越小,统治力更强的母鸡更有可能吃到食物,小鸡在母亲周围寻找食物:
x i , j t + 1 = x i , j t + F L ∗ ( x m , j t − x i , j t ) (3) x_{i,j}^{t+1}=x_{i,j}^{t}+FL*(x_{m,j}^{t}-x_{i,j}^{t})\tag{3} xi,jt+1=xi,jt+FL(xm,jtxi,jt)(3)

伪代码

在这里插入图片描述

3.结果展示

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

4.参考文献

[1] Meng X, Liu Y, Gao X, et al. A new bio-inspired algorithm: chicken swarm optimization[C]//Advances in Swarm Intelligence: 5th International Conference, ICSI 2014, Hefei, China, October 17-20, 2014, Proceedings, Part I 5. Springer International Publishing, 2014: 86-94.

### 关于杜鹃搜索算法 (Cuckoo Search Optimization Algorithm) 杜鹃搜索算法是一种基于自然启发的元启发式优化算法,最初由 Xin-She Yang 和 Suash Deb 提出。该算法模拟了某些种类的寄生性杜鹃鸟的行为模式以及它们在繁殖过程中的策略[^3]。 #### 算法的核心概念 1. **巢穴替换机制**: 假设一部分宿主巢会被新的巢替代的概率为 \( p_a \),这有助于保持种群多样性并防止早熟收敛。 2. **莱维飞行 (Lévy Flights)**: 使用莱维分布来控制步长的变化,使得搜索空间能够更有效地探索全局最优解。 3. **适应度评价**: 每个解都被视为一个“蛋”,其质量通过目标函数值衡量。更好的解会保留下来,而较差的则被淘汰。 以下是杜鹃搜索算法的一个基本伪代码描述: ```plaintext 初始化种群 X_i (i=1,2,...,n) 定义最大迭代次数 T_max 和概率参数 p_a 对于 t = 1 到 T_max 的每次迭代: 对于每一个杜鹃个体 i: 根据 Lévy 飞行更新位置 x_new 如果 f(x_new) < f(X_worst): 替换最差解 X_worst 执行随机发现和淘汰操作: 随机选择部分解按照概率 p_a 进行重置 计算当前最佳解并记录 返回最终找到的最佳解 ``` #### Python 实现示例 下面是一个简单的杜鹃搜索算法实现例子,用于寻找单变量或多变量函数的最小值: ```python import numpy as np def levy_flight(beta=1.5, size=1): sigma_u = (np.gamma(1 + beta) * np.sin(np.pi * beta / 2) / (np.gamma((1 + beta) / 2) * beta * 2 ** ((beta - 1) / 2))) ** (1 / beta) u = np.random.normal(0, sigma_u, size=size) v = np.random.normal(0, 1, size=size) step = u / abs(v) ** (1 / beta) return step def cuckoo_search(objective_func, bounds, n_nests=25, pa=0.25, iterations=100): dim = len(bounds) nests = np.random.uniform([b[0] for b in bounds], [b[1] for b in bounds], (n_nests, dim)) fitness = np.array([objective_func(nest) for nest in nests]) best_nest_idx = np.argmin(fitness) best_nest = nests[best_nest_idx] for _ in range(iterations): new_nest = nests + levy_flight(size=(n_nests, dim)) * 0.01 new_nest = np.clip(new_nest, [b[0] for b in bounds], [b[1] for b in bounds]) new_fitness = np.array([objective_func(n) for n in new_nest]) better_indices = new_fitness < fitness nests[better_indices] = new_nest[better_indices] fitness[better_indices] = new_fitness[better_indices] worst_nests = np.random.rand(n_nests) < pa nests[worst_nests] = np.random.uniform( [b[0] for b in bounds], [b[1] for b in bounds], (sum(worst_nests), dim)) current_best_idx = np.argmin(fitness) if fitness[current_best_idx] < objective_func(best_nest): best_nest = nests[current_best_idx] return best_nest, objective_func(best_nest) # Example usage with a simple function like Sphere Function bounds = [(-5, 5)] * 2 # Define search space boundaries per dimension result = cuckoo_search(lambda x: sum(xi**2 for xi in x), bounds=bounds) print("Best solution found:", result) ``` 此代码实现了基础版本的 CS 算法,并应用于球面测试函数上以展示其实效性。 ### 应用领域 杜鹃搜索已被广泛应用于各种工程和技术问题中,包括但不限于: - 工程设计优化 - 参数估计 - 图像处理 - 路径规划 尽管如此,在面对大规模实例时,原始形式下的蛮力方法并不适用,正如前面提到的内容所示[^1]。因此,通常需要结合其他技术或者改进现有模型结构来进行加速或增强性能表现。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小O的算法实验室

谢谢大佬的肯定!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值