【智能算法】PID搜索算法(PSA)原理及实现


1.背景

2023年,Y Gao受到PID控制理论启发,提出了PID搜索算法(PID-based Search Algorithm, PSA)。

在这里插入图片描述
在这里插入图片描述

2.算法原理

2.1算法思想

PID算法是控制领域的经典算法,分为增量PID控制和位置PID控制,它通过偏差的比例(P)、积分(I)和微分(D)进行控制。PSA通过连续调整系统偏差将整个种群收敛到最优状态。

在这里插入图片描述

2.2算法过程

增量PID控制

计算系统偏差对于最小化问题,迭代次数t处的最佳个体x*(t)是对应于总体历史最小值的个体。多次迭代t的总体偏差ek(t):
e k ( t ) = x ∗ ( t − 1 ) − x ( t − 1 ) (1) \mathbf e_k(t)=\mathbf x^*(t-1)-\mathbf x(t-1)\tag{1} ek(t)=x(t1)x(t1)(1)
为了便于计算和迭代更新:
e k − 1 ( t ) = e k ( t − 1 ) + x ∗ ( t ) − x ∗ ( t − 1 ) (2) \mathbf{e}_{k-1}(t)=\mathbf{e}_k(t-1)+x^*(t)-x^*(t-1)\tag{2} ek1(t)=ek(t1)+x(t)x(t1)(2)
在这里插入图片描述

PID调节

在现实问题中,比例、积分和微分因子会根据不同的情况和问题进行调整。当迭代次数为t时,PID调节的输出值Δu(t):
Δ u ( t ) = K p ⋅ r 2 ⋅ [ e k ( t ) − e k − 1 ( t ) ] + K i ⋅ r 3 ⋅ e k ( t ) + K d ⋅ r 4 ⋅ [ e k ( t ) − 2 e k − 1 ( t ) + e k − 2 ( t ) ] (3) \begin{aligned}\Delta\mathbf{u}(t)=K_{p}\cdot\mathbf{r}_{2}\cdot[\mathbf{e}_{k}(t)-\mathbf{e}_{k-1}(t) ]+K_{i}\cdot\mathbf{r}_{3}\cdot\mathbf{e}_{k}(t)+K_{d}\cdot\mathbf{r}_{4}\cdot[\mathbf{e}_{k}(t)-2\mathbf{e}_{k-1}(t)+\mathbf{e}_{k-2}(t) ]\end{aligned}\tag{3} Δu(t)=Kpr2[ek(t)ek1(t)]+Kir3ek(t)+Kdr4[ek(t)2ek1(t)+ek2(t)](3)
其中r2、r3和r4是n行1列中从0到1的随机数的矢量;Kp、Ki和Kd分别是比例、积分和微分的调整系数,论文中分别设置为1、0.5和1.2。
在传统的PID算法中,输出调节值为0意味着实际值在某个点上已经达到设定值。但是,随着时间的增加,如果不调整受控对象,则真实值很快将不等于设定值。因此,增加了一个称为零输出的条件因子,以防止算法陷入局部最优:
o ( t ) = ( cos ⁡ ( 1 − t / T ) + λ r 5 ⋅ L ) ⋅ e k ( t ) (4) \mathbf{o}(t)=(\cos(1-t/T)+\lambda\mathbf{r}_5\cdot\mathbf{L})\cdot\mathbf{e}_k(t)\tag{4} o(t)=(cos(1t/T)+λr5L)ek(t)(4)
其中,r5是n行和d列中从0到1的随机数的矢量,λ是调整系数:
λ = [ ln ⁡ ( T − t + 2 ) / ln ⁡ ( T ) ] 2 (5) \lambda=\left[\ln(T-t+2)/\ln(T)\right]^2\tag{5} λ=[ln(Tt+2)/ln(T)]2(5)
λ随着t的增加而缓慢减小,这有前期算法充分探索。在后期,λ迅速下降,这有助于算法从探索转向开发。个体的更新都与Δu(t)和o(t)有关:
x ( t + 1 ) = x ( t ) + η ⋅ Δ u ( t ) + ( 1 − η ) ⋅ o ( t ) (6) \mathbf{x}(t+1)=\mathbf{x}(t)+\eta\cdot\Delta\mathbf{u}(t)+(1-\eta)\cdot\mathbf{o}(t)\tag{6} x(t+1)=x(t)+ηΔu(t)+(1η)o(t)(6)
其中,η是n行1列的矩阵:
η = r 6 cos ⁡ ( t / T ) (7) \eta=\mathbf{r}_6\cos(t/T)\tag{7} η=r6cos(t/T)(7)

流程图

在这里插入图片描述

伪代码

在这里插入图片描述
在这里插入图片描述

3.结果展示

使用测试框架,测试PSA性能 一键run.m

CEC2017-F6
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

4.参考文献

[1] Gao Y. PID-based search algorithm: A novel metaheuristic algorithm based on PID algorithm[J]. Expert Systems With Applications, 2023, 232: 120886.

5.代码获取

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小O的算法实验室

谢谢大佬的肯定!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值