1.算法原理
——复现文章:基于多策略的改进白鲸优化算法求解工程问题(Modified beluga whale optimization with multi-strategies for solving engineering problems)
2.改进点
分组聚合策略(Group aggregation strategy)
在集体聚集和觅食时,白鲸会搜索或直接接近种群中的最佳食物源。随着它们靠近,聚集的程度逐渐增加,白鲸的活动范围也会相应减小:
A
d
=
arctan
(
2
π
(
E
v
/
E
v
max
)
0.5
)
arctan
(
2
π
)
S
s
t
e
p
j
=
(
(
1
−
A
d
)
(
E
v
/
E
v
max
)
0.5
)
×
(
2
×
r
a
n
d
−
1
)
{
X
i
T
+
1
=
A
d
×
(
m
e
a
n
T
−
X
i
T
)
+
X
i
T
+
S
s
t
e
p
,
r
a
n
d
<
0.5
X
i
T
+
1
=
A
d
×
(
X
b
e
s
t
T
−
X
i
T
)
+
X
i
T
,
e
l
s
e
(1)
\begin{gathered} Ad={\frac{\arctan\left(2\pi\left(Ev/Ev_{\max}\right)^{0.5}\right)}{\arctan\left(2\pi\right)}} \\ Sstep_{j}=\left((1-Ad)^{(Ev/Ev_{\max})^{0.5}}\right)\times(2\times rand-1) \\ \begin{cases}X_{i}^{T+1}=Ad\times\left(mean^{T}-X_{i}^{T}\right)+X_{i}^{T}+Sstep,&rand<0.5\\X_{i}^{T+1}=Ad\times\left(X_{\mathrm{best}}^{T}-X_{i}^{T}\right)+X_{i}^{T} ,&else\end{cases} \end{gathered}\tag{1}
Ad=arctan(2π)arctan(2π(Ev/Evmax)0.5)Sstepj=((1−Ad)(Ev/Evmax)0.5)×(2×rand−1){XiT+1=Ad×(meanT−XiT)+XiT+Sstep,XiT+1=Ad×(XbestT−XiT)+XiT,rand<0.5else(1)
其中 Ev 是当前的评估次数,Evmax 是最大评估次数,Ad 是聚集程度,随着评估次数的增加,聚集程度逐渐从 0 接近 1。
迁移策略(Migration strategy)
假设白鲸迁移的概率模拟了白鲸迁移的不确定性,即在寻找食物源的连续迁移过程中,白鲸的种群数量随着种群数量的增加而逐渐增加,而种群数量随着种群数量的增加而增加,从而导致白鲸迁移的概率降低。白鲸位置更新:
m
f
=
(
1
−
(
E
v
/
E
v
m
a
x
)
)
E
v
E
v
m
a
x
X
i
,
j
T
+
1
=
(
cos
(
2
π
r
8
)
2
(
X
i
,
j
T
−
1
−
X
i
,
j
T
)
+
sin
(
2
π
r
9
)
2
(
X
r
,
j
T
−
X
i
,
j
T
)
)
u
r
+
X
i
,
j
T
+
(
2
×
r
10
−
1
)
,
r
11
<
m
f
(2)
\begin{gathered} m f=(1-(Ev/Ev_{\mathrm{max}}))^{\frac{Ev}{Ev_{\mathrm{max}}}} \\ X_{i,j}^{T+1}=\left(\cos\left(2\pi r_{8}\right)^{2}\left(X_{i,j}^{T-1}-X_{i,j}^{T}\right)+\sin\left(2\pi r_{9}\right)^{2}\left(X_{r,j}^{T}-X_{i,j}^{T}\right)\right)u_{r} \\ +X_{i,j}^{T}+(2\times r_{10}-1) ,\quad r_{11}<m f \end{gathered}\tag{2}
mf=(1−(Ev/Evmax))EvmaxEvXi,jT+1=(cos(2πr8)2(Xi,jT−1−Xi,jT)+sin(2πr9)2(Xr,jT−Xi,jT))ur+Xi,jT+(2×r10−1),r11<mf(2)
mf 是迁移概率,随着评估次数的增加,该概率会逐渐从 1 变为 0;这表明白鲸逐渐接近最佳食物源,迁移概率相应减小。vr 是移动速度的大小,是一个取值范围在 (3,9) 内的随机数。
伪代码
3.结果展示
CEC2005测试
定性分析:种群分布,多样性,探索开发比
工程应用
拉/压弹簧设计问题
压力容器设计问题
4.参考文献
[1] Jia H, Wen Q, Wu D, et al. Modified beluga whale optimization with multi-strategies for solving engineering problems[J]. Journal of Computational Design and Engineering, 2023, 10(6): 2065-2093.