1.摘要
本文介绍了一种新颖的混合分类器,该分类器融合了深度神经网络与模糊III型决策系统,用于更精确的决策制定。该系统整合了ResNet-18、ResNet-50、面向梯度的直方图(HOG)、邻域成分分析(NCA)以及支持向量机(SVM),专门用于特征提取、选择和分类任务。系统的规则参数通过改进的混沌博弈优化算法(ICGO)进行调整,该算法采用小波变异技术以增强算法性能同时控制计算复杂度。
PS:本文主要介绍改进混沌博弈优化算法(ICGO)~
2.混沌博弈优化算法CGO 原理
3.Improved chaos game optimization (ICGO)
ICGO是混沌游戏优化(CGO)算法的改进算法,由Talatahari等人于2020年提出。这一算法基于混沌理论中分形的自相似性和谢尔宾斯基三角形的构造,经过228个基准函数和11个工程设计问题的广泛评估,ICGO显示出解决多种优化问题的强大能力。CGO和ICGO的计算复杂度为 O ( N m ( 1 + 4 T ) ) O(Nm(1+4T)) O(Nm(1+4T))。
在CGO算法中使用3个种子和一个骰子来生成新的种子:
S
e
e
d
i
1
=
X
i
+
α
i
×
(
β
i
×
G
B
−
γ
i
×
M
G
i
)
S
e
e
d
i
2
=
G
B
+
α
i
×
(
β
i
×
X
i
−
γ
i
×
M
G
i
)
S
e
e
d
i
3
⋅
=
M
G
i
+
α
i
×
(
β
i
×
X
i
−
γ
i
×
G
B
)
\begin{gathered} Seed_{i}^{1} =\mathcal{X}_{\boldsymbol{i}}+\alpha_{\boldsymbol{i}}\times\left(\beta_{\boldsymbol{i}}\times\mathcal{GB}-\gamma_{\boldsymbol{i}}\times\mathcal{MG}_{\boldsymbol{i}}\right) \\ Seed_{i}^{2} =\mathcal{GB}+\alpha_{\boldsymbol{i}}\times\left(\beta_{\boldsymbol{i}}\times\mathcal{X}_{\boldsymbol{i}}-\gamma_{\boldsymbol{i}}\times\mathcal{MG}_{\boldsymbol{i}}\right) \\ Seed_{i}^{3} \cdot=\mathcal{MG}_{\boldsymbol{i}}+\alpha_{\boldsymbol{i}}\times\left(\beta_{\boldsymbol{i}}\times\mathcal{X}_{\boldsymbol{i}}-\gamma_{\boldsymbol{i}}\times\mathcal{GB}\right) \end{gathered}
Seedi1=Xi+αi×(βi×GB−γi×MGi)Seedi2=GB+αi×(βi×Xi−γi×MGi)Seedi3⋅=MGi+αi×(βi×Xi−γi×GB)
在CGO算法中,第四个种子被视为一个骰子或变异算子。这个种子的位置更新是通过对随机选定的决策变量进行随机修改:
S
e
e
d
i
4
=
X
i
(
X
i
k
=
X
i
k
+
R
)
Seed_{\boldsymbol{i}}^4=\mathcal{X}_{\boldsymbol{i}}\bigg(\mathcal{X}_{\boldsymbol{i}}^k=\mathcal{X}_{\boldsymbol{i}}^k+\mathcal{R}\bigg)
Seedi4=Xi(Xik=Xik+R)
为了改进 CGO 算法,将CGO 算法中的简单变异替换为小波变异:
S
e
e
d
l
4
=
{
G
B
+
σ
(
X
i
,
m
a
x
−
G
B
)
,
if
o
<
0.5
G
B
+
σ
(
G
B
−
X
i
,
m
i
n
)
,
if
o
≥
0.5
\left.Seed_{\boldsymbol{l}}^4=\left\{\begin{array}{ll}GB+\sigma\big(\mathcal{X}_{i,max}-\mathcal{GB}\big),&\quad\text{if} o<0.5\\GB+\sigma\big(\mathcal{GB}-\mathcal{X}_{i,min}\big),&\quad\text{if} o\geq0.5\end{array}\right.\right.
Seedl4={GB+σ(Xi,max−GB),GB+σ(GB−Xi,min),ifo<0.5ifo≥0.5
其中,
δ
\delta
δ表述为:
σ
=
1
α
ψ
(
φ
α
)
\sigma=\frac1{\sqrt{\alpha}}\psi\left(\frac\varphi\alpha\right)
σ=α1ψ(αφ)
其中, ψ ( φ α ) = e − ( φ α ) 2 2 . cos ( 5 φ α ) \psi\left(\frac\varphi\alpha\right)=e^{-\frac{(\frac\varphi\alpha)^2}2}.\cos\left(\frac{5\varphi}\alpha\right) ψ(αφ)=e−2(αφ)2.cos(α5φ)是 Morlet 小波函数, α = S . ( 1 S ) ( 1 − T T m a x ) \alpha=\boldsymbol{S}.\left(\frac1{\boldsymbol{S}}\right)^{\left(1-\frac{\mathcal{T}}{\mathcal{T}max}\right)} α=S.(S1)(1−TmaxT)。
伪代码
4.结果展示
CEC2005
5.参考文献
[1] Mehrabi Hashjin N, Amiri M H, Mohammadzadeh A, et al. Novel hybrid classifier based on fuzzy type-III decision maker and ensemble deep learning model and improved chaos game optimization[J]. Cluster Computing, 2024: 1-38.