改进混沌博弈优化算法(ICGO):一种针对模糊III型决策器与集成深度学习模型的优化算法


在这里插入图片描述

1.摘要

本文介绍了一种新颖的混合分类器,该分类器融合了深度神经网络与模糊III型决策系统,用于更精确的决策制定。该系统整合了ResNet-18、ResNet-50、面向梯度的直方图(HOG)、邻域成分分析(NCA)以及支持向量机(SVM),专门用于特征提取、选择和分类任务。系统的规则参数通过改进的混沌博弈优化算法(ICGO)进行调整,该算法采用小波变异技术以增强算法性能同时控制计算复杂度。

PS:本文主要介绍改进混沌博弈优化算法(ICGO)~

在这里插入图片描述

2.混沌博弈优化算法CGO 原理

【智能算法】混沌博弈算法(CGO)原理及实现

3.Improved chaos game optimization (ICGO)

ICGO是混沌游戏优化(CGO)算法的改进算法,由Talatahari等人于2020年提出。这一算法基于混沌理论中分形的自相似性和谢尔宾斯基三角形的构造,经过228个基准函数和11个工程设计问题的广泛评估,ICGO显示出解决多种优化问题的强大能力。CGO和ICGO的计算复杂度为 O ( N m ( 1 + 4 T ) ) O(Nm(1+4T)) O(Nm(1+4T))

在CGO算法中使用3个种子和一个骰子来生成新的种子:
S e e d i 1 = X i + α i × ( β i × G B − γ i × M G i ) S e e d i 2 = G B + α i × ( β i × X i − γ i × M G i ) S e e d i 3 ⋅ = M G i + α i × ( β i × X i − γ i × G B ) \begin{gathered} Seed_{i}^{1} =\mathcal{X}_{\boldsymbol{i}}+\alpha_{\boldsymbol{i}}\times\left(\beta_{\boldsymbol{i}}\times\mathcal{GB}-\gamma_{\boldsymbol{i}}\times\mathcal{MG}_{\boldsymbol{i}}\right) \\ Seed_{i}^{2} =\mathcal{GB}+\alpha_{\boldsymbol{i}}\times\left(\beta_{\boldsymbol{i}}\times\mathcal{X}_{\boldsymbol{i}}-\gamma_{\boldsymbol{i}}\times\mathcal{MG}_{\boldsymbol{i}}\right) \\ Seed_{i}^{3} \cdot=\mathcal{MG}_{\boldsymbol{i}}+\alpha_{\boldsymbol{i}}\times\left(\beta_{\boldsymbol{i}}\times\mathcal{X}_{\boldsymbol{i}}-\gamma_{\boldsymbol{i}}\times\mathcal{GB}\right) \end{gathered} Seedi1=Xi+αi×(βi×GBγi×MGi)Seedi2=GB+αi×(βi×Xiγi×MGi)Seedi3=MGi+αi×(βi×Xiγi×GB)

在CGO算法中,第四个种子被视为一个骰子或变异算子。这个种子的位置更新是通过对随机选定的决策变量进行随机修改:
S e e d i 4 = X i ( X i k = X i k + R ) Seed_{\boldsymbol{i}}^4=\mathcal{X}_{\boldsymbol{i}}\bigg(\mathcal{X}_{\boldsymbol{i}}^k=\mathcal{X}_{\boldsymbol{i}}^k+\mathcal{R}\bigg) Seedi4=Xi(Xik=Xik+R)
为了改进 CGO 算法,将CGO 算法中的简单变异替换为小波变异:
S e e d l 4 = { G B + σ ( X i , m a x − G B ) , if o < 0.5 G B + σ ( G B − X i , m i n ) , if o ≥ 0.5 \left.Seed_{\boldsymbol{l}}^4=\left\{\begin{array}{ll}GB+\sigma\big(\mathcal{X}_{i,max}-\mathcal{GB}\big),&\quad\text{if} o<0.5\\GB+\sigma\big(\mathcal{GB}-\mathcal{X}_{i,min}\big),&\quad\text{if} o\geq0.5\end{array}\right.\right. Seedl4={GB+σ(Xi,maxGB),GB+σ(GBXi,min),ifo<0.5ifo0.5
其中, δ \delta δ表述为:
σ = 1 α ψ ( φ α ) \sigma=\frac1{\sqrt{\alpha}}\psi\left(\frac\varphi\alpha\right) σ=α 1ψ(αφ)

其中, ψ ( φ α ) = e − ( φ α ) 2 2 . cos ⁡ ( 5 φ α ) \psi\left(\frac\varphi\alpha\right)=e^{-\frac{(\frac\varphi\alpha)^2}2}.\cos\left(\frac{5\varphi}\alpha\right) ψ(αφ)=e2(αφ)2.cos(α5φ)是 Morlet 小波函数, α = S . ( 1 S ) ( 1 − T T m a x ) \alpha=\boldsymbol{S}.\left(\frac1{\boldsymbol{S}}\right)^{\left(1-\frac{\mathcal{T}}{\mathcal{T}max}\right)} α=S.(S1)(1TmaxT)

在这里插入图片描述

伪代码

在这里插入图片描述

4.结果展示

CEC2005
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

5.参考文献

[1] Mehrabi Hashjin N, Amiri M H, Mohammadzadeh A, et al. Novel hybrid classifier based on fuzzy type-III decision maker and ensemble deep learning model and improved chaos game optimization[J]. Cluster Computing, 2024: 1-38.

6.代码获取

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小O的算法实验室

谢谢大佬的肯定!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值