2025年群智能SCI1区:非线性降维搜索差分进化算法NDRDE,深度解析+性能实测


在这里插入图片描述

1.摘要

大规模优化问题由于搜索空间的高维性和所需的大量计算资源,面临着显著的挑战。因此,本文提出了一种新型算法——非线性降维搜索差分进化算法(NDRDE),该算法通过将非线性降维技术与差分进化算法相结合,用于有效应对大规模优化中的高维和计算资源消耗问题。

NDRDE的核心创新在于其随机降维策略,这种策略不仅增强了种群的多样性,还提高了算法的探索能力。此外,NDRDE采用了一种球形搜索方法,能够最大限度地消除方向信息,从而增加搜索的随机性,改善探索阶段的效率。

2.差分进化算法DE原理

在过去几十年中,差分进化(DE)算法逐渐成为一种在连续优化任务中非常有前景的算法。L-SHADE是最成功的变种之一,L-SHADE的迭代过程包括变异、交叉和选择,其中选择操作使用贪婪策略来保留新的个体。此外,L-SHADE还具备种群规模线性减少的特性。L-SHADE变异算子:
P i , j = X i , j + F ⋅ ( X b e s t , j − X i , j + X r 1 , j − X r 2 , j ) P_{i,j}=X_{i,j}+F\cdot \begin{pmatrix} X_{best,j}-X_{i,j}+X_{r1,j}-X_{r2,j} \end{pmatrix} Pi,j=Xi,j+F(Xbest,jXi,j+Xr1,jXr2,j)

交叉算子:
U i , j = { P i , j , i f r a n d < C R i X i , j , o t h e r w i s e U_{i,j}= \begin{cases} P_{i,j}, & \mathrm{if}rand<CR_i \\ X_{i,j}, & \mathrm{otherwise} & \end{cases} Ui,j={Pi,j,Xi,j,ifrand<CRiotherwise

其中, C R , F CR,F CR,F初始值设置为0.5,在每次迭代中自适应更新:
F i = C ( M F , r , 0.1 ) C R i = N ( M C , r , 0.1 ) \begin{aligned} & F_{i}=C(M_{F,r},0.1) \\ & C_{Ri}=\mathcal{N}(M_{C,r},0.1) \end{aligned} Fi=C(MF,r,0.1)CRi=N(MC,r,0.1)

其中, C , N C,\mathcal{N} C,N分别表示柯西分布和正态分布。 M F , r M_{F,r} MF,r M C , r M_{C,r} MC,r是从外部档案中随机选取的均值,这些外部档案通过贪婪策略保留上一代中个体的 C R C_{R} CR F F F值生成。

3.改进策略

非线性降维搜索

在NDRDE的探索阶段(NDR搜索)中,多个维度会被随机选择进行更新。NDR搜索的主要目标是在有限的评估次数内最大化搜索效果,确保搜索范围具有价值。
每个个体在NDR中的每个维度的迭代过程可表示为:
X i , j ′ = { X i , j + S i , j , i f j ∈ D i X i , j , o t h e r w i s e X_{i,j}^{\prime}= \begin{cases} X_{i,j}+S_{i,j}, & \mathrm{if}j\in D_i \\ X_{i,j}, & \mathrm{otherwise} & \end{cases} Xi,j={Xi,j+Si,j,Xi,j,ifjDiotherwise

其中, n n n在开始时被随机初始化为1或2,每个个体的 n n n更新:
n = { n , i f f i t t + 1 < f i t t n + ⌈ r a n d ( 0 , 2 ) ⌉ , e l s e i f n ⋅ r a n d < n p n − ⌈ r a n d ( 0 , 2 ) ⌉ , o t h e r w i s e n= \begin{cases} n, & \mathrm{if}fit^{t+1}<fit^t \\ n+\lceil rand(0,2)\rceil, & \mathrm{elseif}n\cdot rand<n_p \\ n-\lceil rand(0,2)\rceil, & \mathrm{otherwise} & \end{cases} n= n,n+rand(0,2)⌉,nrand(0,2)⌉,iffitt+1<fittelseifnrand<npotherwise

球面搜索可以通过将多维信息转化为低维向量来表示多维信息:
S i , j = D j ⋅ cos ⁡ θ S i , j = { D j ⋅ sin ⁡ θ , i f j = d i , 1 D j ⋅ cos ⁡ θ , i f j = d i , 2 S i , j = { D j ⋅ ∏ j D − 1 ⋅ sin ⁡ θ j , i f j = d i , 1 D j ⋅ cos ⁡ θ j − 1 , i f j = d i , n D j ⋅ ∏ j D − 1 ⋅ cos ⁡ θ j − 1 ⋅ sin ⁡ θ j , o t h e r w i s e \begin{aligned} & S_{i,j}=D_{j}\cdot\cos\theta \\ & S_{i,j}\left.= \begin{cases} D_{j}\cdot\sin\theta, & \mathrm{if}j=d_{i,1} \\ D_{j}\cdot\cos\theta, & \mathrm{if}j=d_{i,2} & \end{cases}\right. \\ & S_{i,j}= \begin{cases} \mathcal{D}_{j}\cdot\prod_{j}^{D-1}\cdot\sin\theta_{j}, & \mathrm{if}j=d_{i,1} \\ \mathcal{D}_{j}\cdot\cos\theta_{j-1}, & \mathrm{if}j=d_{i,n} \\ \mathcal{D}_{j}\cdot\prod_{j}^{D-1}\cdot\cos\theta_{j-1}\cdot\sin\theta_{j}, & \mathrm{otherwise} & \end{cases} \end{aligned} Si,j=DjcosθSi,j={Djsinθ,Djcosθ,ifj=di,1ifj=di,2Si,j= DjjD1sinθj,Djcosθj1,DjjD1cosθj1sinθj,ifj=di,1ifj=di,notherwise
其中, D j D_j Dj 表示 ∥ X r 1 , j − X r 2 , j ∥ \| X_{r_1,j} - X_{r_2,j} \| Xr1,jXr2,j θ \theta θ是用于获取球形搜索中所需随机方向的随机角度。NDRDE的降维策略是随机的,能够增强种群多样性,并使得在黑箱问题中更容易找到全局最优解。球形搜索方法最大程度地消除方向信息,增加随机性并提高探索能力。将NDR与球形搜索结合,极大地增强了算法的探索能力。

NDR控制设计

为了获得最佳优化结果,降维后的局部搜索至关重要,它能够恢复高密度的交互信息。NDRDE采用投票机制来决定搜索模式,当NDR搜索的进展速率超过预设的阈值时,迭代次数会增加;否则,搜索过程将结束。局部搜索需要更多的迭代来实现高精度的开发。在大规模全局优化(LSGO)问题中,由于评估次数有限,策略切换条件较为严格。NDR的性能每完成总迭代的0.5%时进行评估,如果未达到设定的阈值,算法将切换为L-SHADE搜索。为此,NDRDE采用了一种线性投票机制来决定何时进行切换:
V t = { V t + O t , i f f t > 0.05 0 , o t h e r w i s e V_t= \begin{cases} V_t+O_t, & \mathrm{if}f_t>0.05 \\ 0, & \mathrm{otherwise} & \end{cases} Vt={Vt+Ot,0,ifft>0.05otherwise

其中, V t V_t Vt是预设评估次数, O t O_t Ot是合同续签次数, f t f_t ft是在预设评估次数下的适应度进展程度:
f t = 1 − f i t m i n f i t o l d f_t=1-\frac{fit_{min}}{fit_{old}} ft=1fitoldfitmin

重新初始化

重新初始化是一种常用的技术,旨在克服局部最优解的问题,并已被广泛应用于许多研究中。NDRDE通过提出多个以已知信息为中心的小搜索范围,来缩小搜索空间。在这些范围之外的个体将被重新初始化,并限制在小范围内进行搜索。算法将局部搜索空间划分为多个区域,并以适应度排名最高的个体为中心进行探索。对于缺失的个体,它们将通过随机初始化并围绕这些中心个体进行重置:
X i , j ′ = { X g , j , i f   i ≤ h X g , j + c i f   h < i ≤ q X g , j + k o t h e r w i s e X_{i,j}^{\prime}= \begin{cases} X_{g,j}, & \mathrm{if~}i\leq h \\ X_{g,j}+c & \mathrm{if~}h<i\leq q \\ X_{g,j}+k & \mathrm{otherwise} & \end{cases} Xi,j= Xg,j,Xg,j+cXg,j+kif ihif h<iqotherwise

伪代码

在这里插入图片描述
流程图

在这里插入图片描述

4.结果展示

在这里插入图片描述

5.参考文献

[1] Yang Y, Li H, Lei Z, et al. A Nonlinear Dimensionality Reduction Search Improved Differential Evolution for large-scale optimization[J]. Swarm and Evolutionary Computation, 2025, 92: 101832.

6.代码获取

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小O的算法实验室

谢谢大佬的肯定!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值