✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
摘要: 倒立摆系统是一个经典的非线性控制问题,具有高度的不稳定性和复杂性,广泛应用于机器人控制、平衡控制等领域。本文对三种常见的控制算法 - 模型预测控制 (MPC)、线性二次型调节器 (LQR) 和比例-积分-微分 (PID) 控制 - 在倒立摆控制中的应用进行比较分析,并提供相应的Matlab代码实现。通过理论分析和仿真实验,评估三种算法的性能,并探讨其优缺点和适用场景。
关键词: 倒立摆,模型预测控制,线性二次型调节器,比例-积分-微分控制,Matlab
1. 概述
倒立摆是一个经典的控制系统,它由一个垂直放置的摆杆和一个水平移动的底座组成。控制目标是通过控制底座的运动,使摆杆保持直立状态。倒立摆系统具有高度的不稳定性和复杂性,其动态特性由非线性微分方程描述,且存在复杂的耦合关系。
2. 倒立摆系统建模
倒立摆系统的动力学模型可通过牛顿定律推导。假设摆杆质量为 m,长度为 l,底座质量为 M,重力加速度为 g。设 θ 为摆杆与垂直方向的夹角,x 为底座位置,则系统的状态空间方程为:
[ẋ, θ̇, ẍ, θ̈] = [θ̇, ẍ, (m*l*θ̇^2*sin(θ) - m*g*sin(θ) - b*ẋ)/(M+m), (g*sin(θ) - (l/2)*ẍ*cos(θ))/(l*(M+m))]
其中,b 为底座的阻尼系数。
3. 控制算法比较
3.1 模型预测控制 (MPC)
MPC 是一种基于模型的优化控制算法,通过预测系统未来状态,并优化控制输入,以最小化目标函数。在倒立摆控制中,MPC 首先建立一个预测模型,然后利用滚动优化策略,在每个采样时刻求解一个优化问题,得到最优控制输入。
优点:
-
可以处理非线性系统和约束条件。
-
可以对未来状态进行预测,实现前瞻性控制。
-
可以灵活地调整控制目标和约束条件。
缺点:
-
计算量较大,需要较高的计算能力。
-
对模型的准确性要求较高。
3.2 线性二次型调节器 (LQR)
LQR 是一种最优控制算法,其目标是找到一个线性状态反馈控制律,以最小化一个二次型目标函数。在倒立摆控制中,LQR 首先线性化系统模型,然后求解一个 Riccati 方程,得到最优反馈增益矩阵。
优点:
-
计算量较小,易于实现。
-
对模型误差有一定的鲁棒性。
缺点:
-
仅适用于线性系统。
-
无法处理约束条件。
3.3 比例-积分-微分 (PID) 控制
PID 控制是一种经典的反馈控制算法,它通过调节比例 (P)、积分 (I) 和微分 (D) 参数来实现控制目标。在倒立摆控制中,PID 控制根据摆杆的倾角和角速度来计算控制信号,驱动底座进行运动。
优点:
-
结构简单,易于实现。
-
具有较强的鲁棒性。
缺点:
-
难以处理非线性系统。
-
参数调整比较困难。
4. Matlab 实现
本文使用 Matlab 软件对三种控制算法进行仿真实验,并对比其性能。代码如下:
4.1 MPC 代
% 初始状态
x0 = [0; 0; 0; 0.1];
% 仿真
sim('inverted_pendulum_mpc', t_end, dt);
% 绘图
figure;
subplot(2,1,1);
plot(tout, xout(:,1));
ylabel('底座位置');
subplot(2,1,2);
plot(tout, xout(:,3));
ylabel('摆杆角度');
4.2 LQR 代码% 初始状态
x0 = [0; 0; 0; 0.1];
% 仿真
sim('inverted_pendulum_lqr', t_end, dt);
% 绘图
figure;
subplot(2,1,1);
plot(tout, xout(:,1));
ylabel('底座位置');
subplot(2,1,2);
plot(tout, xout(:,3));
ylabel('摆杆角度');
4.3 PID 代码
% 初始状态
x0 = [0; 0; 0; 0.1];
% 仿真
sim('inverted_pendulum_pid', t_end, dt);
% 绘图
figure;
subplot(2,1,1);
plot(tout, xout(:,1));
ylabel('底座位置');
subplot(2,1,2);
plot(tout, xout(:,3));
ylabel('摆杆角度');
5. 仿真结果分析
仿真结果表明,三种算法都能有效控制倒立摆系统,但性能表现存在差异。MPC 算法具有最佳的控制性能,可以实现快速稳定的摆杆平衡,并且能够有效处理外部扰动。LQR 算法的性能稍逊于 MPC,但计算量更小,易于实现。PID 算法的性能最差,但结构简单,鲁棒性较强。
6. 结论
本文对 MPC、LQR 和 PID 三种控制算法在倒立摆控制中的应用进行了比较分析,并提供了相应的 Matlab 代码实现。仿真结果表明,MPC 算法具有最佳的控制性能,LQR 算法具有良好的性能和较小的计算量,PID 算法则具有较强的鲁棒性。在实际应用中,应根据具体需求选择合适的控制算法。
⛳️ 运行结果
🔗 参考文献
[1] 黄丹,周少武,吴新开,等.基于LQR最优调节器的倒立摆控制系统[J].微计算机信息, 2004, 20(2):3.DOI:10.3969/j.issn.1008-0570.2004.02.018.
[2] 黄丹,周少武,吴新开,等.基于LQR最优调节器的倒立摆控制系统[J].微计算机信息, 2004.DOI:CNKI:SUN:WJSJ.0.2004-02-017.
[3] 桑英军,范媛媛,徐才千.单级倒立摆控制方法研究[J].控制工程, 2010, 17(6):4.DOI:10.3969/j.issn.1671-7848.2010.06.008.
[4] 严雪莉,江汉红.单级倒立摆控制方法的仿真对比研究[J].测控技术, 2005, 24(7):3.DOI:10.3969/j.issn.1000-8829.2005.07.012.
🎈 部分理论引用网络文献,若有侵权联系博主删除
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类