EuRoc数据集使用

本文详细介绍了EuRoc数据集中MachineHall01场景的左、右相机参数及畸变模型,包括相机内参、畸变系数等,并提到了左相机的位姿真值信息,对于理解与使用该数据集进行无人机视觉定位与导航研究具有指导意义。
摘要由CSDN通过智能技术生成

  EuRoc数据集是有无人机采集的,它包括双目数据和IMU数据。本文以Machine Hall 01为例,讲解它的双目数据如何使用。

1 左相机参数

  cam0代表左相机,其相机内参为,
f x = 458.654 , f y = 457.296 , c x = 367.215 , c y = 248.375 f_x = 458.654, f_y = 457.296, c_x = 367.215, c_y = 248.375 fx=458.654,fy=457.296,cx=367.215,cy=248.375
相机的畸变参数为,
k 1 = − 0.28340811 , k 2 = 0.07395907 , p 1 = 0.00019359 , p 2 = 1.76187114 × 1 0 − 5 k_1=-0.28340811, k_2=0.07395907, p_1=0.00019359, p_2=1.76187114 \times 10^{-5} k1=0.28340811,k2=0.07395907,p1=0.00019359,p2=1.76187114×105
  相机畸变模型介绍如下,已知畸变前后相机归一化平面上的点分别记作 ( x , y ) (x, y) (x,y) ( x d i s t o r t e d , y d i s t o r t e d ) (x_{distorted}, y_{distorted}) (xdistorted,ydistorted),且将 x 2 + y 2 \sqrt{x^2+y^2} x2+y2 记作 r r r,那么有,
x d i s t o r t e d = x ( 1 + k 1 r 2 + k 2 r 4 ) + 2 p 1 x y + p 2 ( r 2 + 2 x 2 ) x_{distorted}=x(1+k_1r^2+k_2r^4)+2p_1xy+p_2(r^2+2x^2) xdistorted=x(1+k1r2+k2r4)+2p1xy+p2(r2+2x2)

y d i s t o r t e d = y ( 1 + k 1 r 2 + k 2 r 4 ) + p 1 ( r 2 + 2 y 2 ) + 2 p 2 x y y_{distorted}=y(1+k_1r^2+k_2r^4)+p_1(r^2+2y^2)+2p_2xy ydistorted=y(1+k1r2+k2r4)+p1(r2+2y2)+2p2xy

2 右相机内参

  cam1代表右相机,其相机内参为,
f x = 457.587 , f y = 456.134 , c x = 379.999 , c y = 255.238 f_x = 457.587, f_y = 456.134, c_x = 379.999, c_y = 255.238 fx=457.587,fy=456.134,cx=379.999,cy=255.238
相机畸变参数为,
k 1 = − 0.28368365 , k 2 = 0.07451284 , p 1 = − 0.00010473 , p 2 = − 3.55590700 × 1 0 − 5 k_1 = -0.28368365, k_2 = 0.07451284, p_1 = -0.00010473, p_2 = -3.55590700 \times 10^{-5} k1=0.28368365,k2=0.07451284,p1=0.00010473,p2=3.55590700×105

3 左相机位姿真值

  在state_groundtruth_estimate0文件夹下存储了机体系的位姿真值,

更新中

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

YMWM_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值