点云数据的每个点之间的平均距离计算(点云密度计算)(附open3d python代码)

本文介绍了如何利用Python的open3d库计算点云数据中每个点之间的平均距离,以此来评估点云的密度。通过理解点云的平均间距,可以更好地理解和处理点云数据的特性。
摘要由CSDN通过智能技术生成

对于每个点,都计算了离它最近的点的距离,
由此可以得知这堆点云的所有点之间的平均距离。

根据这个平均距离,可以用来估算一些其他算法的半径参数,距离参数,
比如法向量计算的领域距离参数,距离的距离阈值参数。


另外,采样设备不同、设备距离场景远近不同,会使点云密度产生差异。
现有的对点云密度的估算方法大多是基于距离的方法。
基于距离的平均距离密度密度表示法是通过计算点云各点的距离平均值
来估算点云分布疏密程度。

# coding:utf-8
import numpy as np
import open3d as o3d

print("->正在加载点云... ")
point_cloud = o3d.io.read_point_cloud("gongjian1.pcd")
print(point_cloud)

# 对于每个点,都计算了离他最近的点的距离,由此可以得知这堆点云的所有点之间的平均距离
distances = point_cloud.compute_nearest_neighbor_distance()
avg_dist = np.mean(distances)
print("avg_dist ", avg_dist)

# output : avg_dist  1.4646226417514927

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

点云-激光雷达-Slam-三维牙齿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值