fast lio 2 保存每一帧的点云PCD和里程计矩阵 Odom 在txt文件

在Fast LIO2中,通过修改laserMapping.cpp源代码,可以实现每一帧点云数据以PCD格式和里程计矩阵以TXT格式的保存。用户需将代码中的路径调整至个人计算机的相应位置。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

修改了源代码的 laserMapping.cpp 文件,替换为下面的代码就可以保存了,注意里面有一个路径,需要修改为你的电脑的路径

      
// This is an advanced implementation of the algorithm described in the
// following paper:
//   J. Zhang and S. Singh. LOAM: Lidar Odometry and Mapping in Real-time.
//     Robotics: Science and Systems Conference (RSS). Berkeley, CA, July 2014.

// Modifier: Livox               dev@livoxtech.com

// Copyright 2013, Ji Zhang, Carnegie Mellon University
// Further contributions copyright (c) 2016, Southwest Research Institute
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// 1. Redistributions of source cod
### 使用EVO工具评估Fast-LIO SLAM系统 为了评估Fast-LIO SLAM系统的性能,可以采用EVO (Evaluation of Visual Odometry) 工具来分析轨迹估计的准确性。此过程涉及几个方面的工作。 #### 准备工作环境 确保已安装必要的依赖项支持库,以便能够顺利运行Fast-LIO以及EVO工具。对于Linux用户来说,在Ubuntu环境下操作较为常见。如果尚未完成,则需先按照官方文档指导设置好开发环境[^2]。 #### 获取真值数据集 要对比SLAM系统的输出与实际路径之间的差异,必须拥有精确的真实世界运动轨迹作为参照标准。可以选择公开的数据集如KITTI, EuRoC MAV Dataset等,这些资源提供了带有时间戳的位置信息其他传感器读数,非常适合用于验证目的。 #### 导出Fast-LIO轨迹文件 通过配置Fast-LIO保存其计算得出的姿态变化序列至外部存储介质中。通常情况下,这将以特定格式(例如TUM或Kitti)保存为文本文件,方便后续处理程序识别解析。 #### 运行EVO进行定量评价 一旦获得了待测系统的轨迹记录对应的时间同步地面实况资料之后,就可以调用EVO命令行接口执行具体评测任务了。下面给出一段Python脚本示范如何加载两个不同源的数据并绘制相对位姿误差图: ```python import evo.main_ape as main_ape from evo.core.metrics import PoseRelation import numpy as np # 加载真实轨迹估计轨迹 traj_ref = ... # 真实轨迹对象实例化 traj_est = ... # 预估轨迹对象实例化 result = main_ape.ape(traj_ref, traj_est, pose_relation=PoseRelation.translation_part) print(result.stats) ``` 上述代码片段展示了怎样利用`main_ape`模块中的函数实现绝对姿态误差(Absolute Pose Error) 的测量,并打印统计摘要报告。更多关于参数设定细节可查阅[EVO GitHub页面](https://github.com/MichaelGrupp/evo)[^1]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

点云-激光雷达-Slam-三维牙齿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值