FAST-LIO2建图后无法保存PCD文件

作者在使用他人提供的bag包使用fast-lio2算法建图的时候,发现建图后PCD文件夹中没有生成对应的PCD文件,rviz中是有正常的激光点云图像显示,尝试了以下方法都没有办法解决:

1、将lasermapping.cpp文件里面的所有pcd_save_en变量改成true

2、将mid360.yaml文件里的pcd_save_en改称true

3、根据fast-lio2的github页面里的readme,在mapping_mai360.launch中加入<param name="pcd_save_enable" type="bool" value="1"/>

4、重启电脑

5、将Eigen的版本从3.3.9换回3.3.4

6、在各层文件夹目录下新建名为PCD的文件夹,重新运行

7、跑官方数据集,官方数据集可以用

在尝试第7个方法的时候发现了一点端倪,开始质疑是别人提供的bag包有问题,使用rosbag info命令查看包的话题信息后终于发现了问题所在

这个包的话题是:

/aft_mapped_to_init

/cloud_registered

这个包是用mid360激光雷达录制的,但是话题根本不是fast-lio2要求的话题,这就很离谱!

后面检查fast-lio2的源码,在lasermapping.cpp里面save_pcd_en的部分插入了一些cout来检查,发现跑这个包的时候根本没有进入到保存pcd文件的函数里面。这个包里面的数据是经过处理的,能够在rviz中实时显示建图信息,但是由于他提供的不是livox/lidar和livox/imu的话题(mid360原始的话题信息),因此不能保存成PCD文件。

<think>嗯,用户问的是关于FAST-LIVO2FAST-LIO2FAST-LIO这几个算法中使用的卡尔曼滤波器类型及其区别。首先,我需要回忆一下这些算法的基本框架。FAST-LIO系列都是基于紧耦合的激光雷达惯性里程计,而FAST-LIVO则是结合了视觉和激光雷达的。 我记得FAST-LIO最初使用的是扩展卡尔曼滤波器(EKF),但后来可能转向了迭代卡尔曼滤波器(IKF)。不过具体的版本可能有差异。比如,FAST-LIO可能用的是IKF,而FAST-LIO2可能引入了IKF的改进版本,或者更高效的实现方式,比如增量式更新。此外,FAST-LIVO2作为多传感器融合的系统,可能结合了EKF或者IKF来处理视觉和激光的数据融合。 接下来,需要确认每个算法具体使用的滤波器类型。FAST-LIO的核心是紧耦合的激光雷达惯性里程计,采用迭代卡尔曼滤波来优化状态估计。FAST-LIO2可能在数据结构和效率上做了优化,比如使用ikd树,但滤波器类型可能仍然是IKF。FAST-LIVO2结合视觉和激光,可能延续了FAST-LIO系列的迭代卡尔曼滤波,但需要处理视觉特征,可能引入其他优化步骤。 区别方面,FAST-LIOFAST-LIO2可能是在数据关联和计算效率上的提升,而FAST-LIVO2则是多模态传感器的融合,可能在状态向量的维度上有所不同,处理视觉特征需要额外的步骤。此外,是否使用增量式更新或不同的线性化方法也可能导致滤波器实现的差异。 需要查证相关文献,确认每个算法使用的具体滤波器类型。例如,FAST-LIO的论文中可能提到使用的是迭代扩展卡尔曼滤波(IEKF),而FAST-LIO2可能进一步优化了迭代过程。FAST-LIVO2作为后续工作,可能在滤波器结构上保持一致,但增加了视觉部分的状态变量和处理方法。 最后,总结出各个算法使用的卡尔曼滤波器类型,并指出它们的区别主要在于迭代方式、状态更新方法以及处理多传感器数据时的扩展。</think>### FAST-LIO系列卡尔曼滤波器类型及区别 #### 1. **FAST-LIO** - **滤波器类型**:迭代扩展卡尔曼滤波器(Iterated Extended Kalman Filter, IEKF)[^1] - **特点**: - 基于紧耦合的激光雷达-惯性里程计(LiDAR-Inertial)框架,通过迭代优化状态估计(如位置、姿态、速度等)的线性化点,提升非线性系统的精度。 - 使用 $\boxplus$ 和 $\boxminus$ 操作符直接操作流形空间,避免传统欧拉角参数化的奇异性问题。 - 每次迭代更新时重新计算残差和雅可比矩阵,逐步逼近最优解。 #### 2. **FAST-LIO2** - **滤波器类型**:改进的迭代卡尔曼滤波器(增量式更新) - **特点**: - 延续IEKF框架,但引入增量更新机制,利用动态更新的ikd树加速最近邻搜索,减少计算量[^2]。 - 支持非线性测量模型的高效处理,通过逐步优化残差实现实时性。 - 在状态更新中直接融合原始点云,无需特征提取,鲁棒性更强。 #### 3. **FAST-LIVO2** - **滤波器类型**:多传感器迭代卡尔曼滤波器 - **特点**: -FAST-LIO2基础上融合视觉数据(Visual-Inertial-LiDAR),扩展状态向量以包含视觉特征参数。 - 通过联合优化视觉重投影误差和激光雷达几何误差,提升复杂场景下的定位精度[^3]。 - 采用分阶段迭代策略:先优化惯性-视觉部分,再融合激光雷达数据,减少计算复杂度。 #### 主要区别 | 算法 | 传感器类型 | 核心滤波器 | 关键改进 | |--------------|------------------|------------------|-----------------------------------| | FAST-LIO | LiDAR + IMU | IEKF | 流形空间操作符、紧耦合迭代优化 | | FAST-LIO2 | LiDAR + IMU | 增量式IEKF | ikd树、原始点云直接融合 | | FAST-LIVO2 | LiDAR + IMU + 视觉 | 多模态IEKF | 视觉-激光联合优化、分阶段迭代 | ### 相关文献引用 - FAST-LIO:基于IEKF的紧耦合LiDAR-IMU融合[^1] - FAST-LIO2:通过ikd树和增量更新提升效率[^2] - FAST-LIVO2:视觉-激光-惯性多传感器迭代优化框架[^3]
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值